

ATOMIC STRUCTURE

1		ween n^{th} and $(n + 1)^{th}$ P	Bohr's radius of H atom is e	equal to its $(n-1)^{th}$ Bohr's radius. Th	
	value of n is :-	(2) 2	(2) 2	(4) 4	
	(1) 1	(2) 2	(3) 3	(4) 4	
2				alpha particle (a) and neutron (n) is	
	1) e, p, n, α	2) n, p, e, α	3) n, α, p, e	4) n, p, α, e	
3	In photo electric	effect, the energy photo	on striking a metallic surfa	nce is $5.6 \times 10^{-19} J_{\odot}$ The kinetic energ	
	of the ejected ele	ectrons is $12.0 \times 10^{-20} J$.	The work function is		
	1) 6.4×10 ⁻¹⁹ J	2) $6.8 \times 10^{-19} J$	3) 4.4×10 ⁻¹⁹ J	4) $6.4 \times 10^{-20} J$	
4	The ratio of high	est possible wavelengt	h to lowest possible waveleng	gth of Lyman series is	
	1) 4/3	2) 9/8	3) 27/5	4) 16/5	
5		•	l line emitted by the hydro R= Rydberg constant).	ogen atom in the Lyman series? (h=	
	1) $\frac{5hcR}{36}$	2) $\frac{4hcR}{3}$	3) 3hcR	4) $\frac{7hcR}{144}$	
	36	3	4	144	
6	The change in vel	ocity when hydrogen e	lectron jumps from K she	ll to L shell is	
	 One-half of its or 	iginal velocity	Twice to its original	lvelocity	
	3) One-quarter of it	s original velocity	4) Equal to its original	velocity	
7	If the wavelength	of the electron is nur	merically equal to the dis	stance travelled by it in 1 sec, then	
	h	<u> </u>	h	<u> </u>	
	1) $\lambda = \frac{h}{p}$	2) $\lambda = \sqrt{\frac{n}{n}}$	3) $\lambda = \frac{h}{m}$	4) $\lambda = \sqrt{\frac{h}{p}}$	
	•	1 111	<i>…</i>	12	
8	_	_	entum are equal, then unce	ertainty in velocity is :	
	1) $\sqrt{\frac{h}{\pi}}$	$\frac{1}{h}$	3) $\frac{1}{2m}\sqrt{\frac{h}{\pi}}$	4) $2m\sqrt{\frac{h}{\pi}}$	
	$\sqrt[1]{\eta_{\pi}}$	$2\sqrt{\pi}$	$2m \sqrt{\pi}$	$\sqrt{\pi}$	
9	The velocities of two particles A and B are 0.05 and 0.02m/s respectively. The mass of B is five times				
		ie ratio of their de-Bro			
	1) 2 : 1	2) 1 : 4	3) 1 : 1	4) 4 : 1	
			1		
10			elocity of 10 m.s ⁻¹ . If the e	rror in measurement of velocity is	
10	0.1%, the uncerta	inity in its position is	-	· ·	
10		inity in its position is	elocity of 10 m.s ⁻¹ . If the e	4) 2.64 x 10 ⁻³² m	

11	Consider the follow	ving statements :			
	1) Electron density is	n XY plane in $3d_{x^2-y^2}$ orbit	al is zero		
	2) Electron density in XY plane in $3d_z^2$ orbital is zero				
	3) 2s orbital has only	•			
	4) For 2p _z orbital Y2				
	The correct statem 1) 2 and 3	nents are : 2) 1,2,3,4	3) Only 2	4) 1 & 3	
12	*		, ,	uantum numbers –1, 0, +1	
	_		21	2.1	
	1) $\sqrt{\frac{3}{2}} \frac{h}{\pi}$	2) $\frac{n}{\pi}$	3) $\frac{2h}{\pi}$	4) $\frac{3}{2}\frac{h}{\pi}$	
13	12 %	momentum of electrons i	n an ion is 4.84 BM. Its t	total spin will be	
				-	
	1) ±1	2) ±2	$3) \ge \sqrt{\frac{h}{4\pi}}$	4) ±2.5	
14		_		ts.Thier percentage abundance	
	1)10.5	ectively.What is the aton 2)11.5	3)12.5	4)13.5	
15		•	-	A ⁰ . The frequency of light which	
15		t naving energy E nas w ergy equal to 3E, is	avelength equal to 7200.	A*. The frequency of agnt which	
	1) 1.25×10 ¹⁴ s ⁻¹	2) 1.25×10 ¹⁵ s ⁻¹	3) 1.25×10 ¹³ s ⁻¹	4) 1.25×10 ¹⁴ s ⁻¹	
16	When a metal is in	radiated with light of fr	equency 4.0×10 ¹⁶ s ⁻¹ the	photo electrons emitted had six	
	times the K.E as the	e K.E of photo electron en	nitted when the metal was	s irradiated with light of frequency	
		alculate the critical frequ	iency of the metal.		
	1) $2.0 \times 10^{16} s^{-1}$	$2)_{1.6\times10^{16}}$ s ⁻¹	$3)3.0\times10^{16}s^{-1}$	4) $4.2 \times 10^{16} s^{-1}$	
17	-			ctive forces on the electron(work	
	function) of Li, Na and Rb are 2.41eV, 2.3eV and 2.09eV respectively, the work function of "K" could approximately be in eV				
	1) 2.52	2) 2.2	3) 2.35	4) 2.01	
18	A photon of wavele	•	-	function of the metal is 2.13eV. The	
	velocity of the photo	electron is			
	1) $5.67 \times 10^6 ms^{-1}$	2) $5.67 \times 10^5 ms^{-1}$	3) $5.67 \times 10^{-5} ms^{-1}$	4) $5.67 \times 10^{-6} ms^{-1}$	
19					
19		•		incident on the metal plate, radiation is $5f_0$, V_2 is velocity of	
	emitted electron , t	hen $V_1:V_2$ is			
	1)1:4	2) 1:2	3) 2:1	4) 4:1	
20		gy emitted when electron f lowest wave energy in t	-	drogen undergo transition giving atomic spectrum.	
	1) $n_2 = 3$ to $n_1 = 2$		2) $n_2 = 2 \text{ to } n_1 = 1$; E		
	3) $n_2 = 3$ to $n_1 = 1$	E = 180.8 KJ	4) $n_2 = 4$ to $n_1 = 2$; E	= 182.5 KJ	
21	The energy differen	ice between the states of i	n=2 and $n=3$ is 'E' eV i	n Hydrogen atom. The ionization	
21	The energy different potential of H atom		n=2 and n=3 is 'E' eV i	n Hydrogen atom. The ionization	

22	Which of the follo	wing relationship is	correct?		
	1) E_1 of $H = \frac{1}{2}E_2$ of $He^+ = \frac{1}{3}E_3$ of $Li^{+2} = \frac{1}{4}$ of E_4 of Be^{+3}				
	2) E_1 of $H = E_2$ of $He^+ = E_3$ of $Li^{+2} = E_4$ of Be^{+3}				
	3) E_1 of $H = 2E_2$ of	$f He^+ = 3E_3 \text{ of } Li^{+2} = 4E_4$	of Be ⁺³		
	4) E_1 of $H = \frac{2}{3}E_2$ or	of $He^+ = \frac{4}{3}E_3$ of $Li^{+2} = \frac{5}{4}I$	E_4 of Be^{+3}		
23	What is the wavel	ength of a photon emitte	d during a transition fron	n = 5 state to the $n = 2$ state	
	in the hydrogen at	om 2) 234nm	3) 476nm	4) 244nm	
	1) 434nm	2) 23 41111 1	3) 470IIII	4) 244nm	
04	337147-17114-1		1 6 1 1 11 - 6 1	l'	
24	•			liameter 20.6 nm of the hydrogen the principal quantum number?	
	1) 10	2) 14	3) 12	4)16	
25	. If the radius of th	e first Bohr orbit of Hydi	rogen atom is 'x', then the	de-Broglie wavelength of electron	
	in third orbit is no	early.			
	1) 2πx	2) 6πx	3) 9x	4) x/3	
26	A single electron in present in one ion		ergy equal to 217.6eV. Wha	nt is the total number of neutrons	
	1) 2	2) 4	3) 5	4) 9	
27	In a certain electr	onic transition in the hyd	drogen atom from an initi	al state (1) to a final state (2), the	
		rbital radius (r ₁ -r ₂) is 24	times the first Bohr radiu	is. Identify the transition.	
	1)5→1	$2) 25 \rightarrow 1$	3) 8 → 3	4) 1 → 5	
28			ergy of the Ist stationary		
	1) 4.41×10 ⁻¹⁶ J at		2) -4.41×10^{-17} J atom		
	3) -2.2×10^{-15} J ato	m^{-1} –	4) -8.83×10^{-17} J aton	n ⁻¹	
29			n is 1.312 x 10° J mol-1. T	he energy required to excite the	
		m from n=1 to n=2 is	3) 7.56 x 10 ⁵ J mol ⁻¹	4) 9 84 v 10 ⁵ I mol ⁻¹	
	1) 8.31 X 10 3 IIIO1	2) 0.30 XIO 3 IIIOI	3) 7.30 x 10 3 moi	4) 9.04 X 10 J IIIO1	
30					
30		_	J. The wave length of th		
	1) 7965A ⁰	2)4625A ⁰	3) 91A ⁰	4)8967A ⁰	
31	Which one of the	following sets correctly i	represents the in case in t	he paramagnetic property of the	
	ions.				
	1) $Cu^{+2} > V^{+2} > Ct$		2) $Cu^{+2} < Cr^{+2} < V^{+2} <$		
	3) $Cu^{+2} < V^{+2} < Cr$	$r^{+2} < Mn^{+2}$	4) $V^{+2} < Cu^{+2} < Cr^{+2} <$	Mn ⁺²	
32	The magnetic mor	nent of cobalt of the com	pound Hg[Co(SCN) ₄] is [C	Given :Co ⁺²]	
	1) √3	2) √8	3) √15	4) $\sqrt{24}$	
	<u> </u>				

33	List - I List - II
	 I) ψ² depends only upon distance a) p—orbitals
	II) ψ^2 depends upon distance and on one direction b) d-orbital
	III) ψ^2 depends upon distance and on two directions c) f—orbital
	IV) ψ^2 depends upon distance and on three directions d) s –orbitals
	The correct match is
	и ш ш и и ш и и и п ш и и и и и и и и и
	1) dcba2)cbad 3) dabc 4)dacb
34	List-I List-II
	A) No of electrons present in an orbit 1) 2 B) Number of orbitals in an orbit 2) n
	C) Number of electrons in an orbital 3) n ²
	D) Number of sub shells in an orbit 4) 2n ²
	The correct match is A B C D A B C D
	1) 4 2 1 3 2) 1 2 3 4
	3) 4 3 1 2 4) 2 1 3 4
35	Which electronic level would allow the hydrogen atom to absorb a photon but not to emit
	a photon
	(1) 3s (2) 2p (3) 2s (4) 1s
36	If electron, hydrogen, helium and neon nuclei are all moving with the velocity of light, then the wavelengths associated with these particles are in the order
	(1) Electron > hydrogen > helium > neon (2) Electron > helium > neon
	(3) Electron < hydrogen < helium < neon (4) Neon < hydrogen < helium < electron
37	
	The uncertainty in the position of an electron (mass = 9.1×10^{-28} g) moving with a velocity
	of $3.0 \times 10^4 cm s^{-1}$ accurate upto 0.001% will be (Use $\frac{h}{4\pi}$ in the uncertainty expression,
	where $h = 6.626 \times 10^{-27} \text{ erg} - s$)
	(1) 1.92cm (2) 7.68cm (3) 5.76cm (4) 3.84cm
38	Which of the following statements (s) is (are) not correct
	(1) The electronic configuration of Cr is $[Ar]^3d^54s^1$ (Atomic no. of $Cr = 24$)
	(2) The magnetic quantum number may have a negative value
	(3) In silver atom, 23 electrons have a spin of one type and 24 of the opposite type (Atomic no. of Ag = 47)
	(4) The oxidation state of nitrogen in HN ₃ is -3
39	The position of both an electron and a helium atom is known within 1.0mm and the
	momentum of the electron is known within $50 \times 10^{-26} kg ms^{-1}$. The minimum uncertainty in
	the measurement of the momentum of the helium atom is
	(1) 50 kg ms^{-1} (2) 60 kg ms^{-1} (3) $80 \times 10^{-26} \text{ kg ms}^{-1}$ (4) $50 \times 10^{-26} \text{ kg ms}^{-1}$
40	The nucleus of an atom can be assumed to be spherical. The radius of the nucleus of
	mass number A is given by $1.25 \times 10^{-13} \times A^{1/3}$ cm Radius of atom is one A. If the mass number is 64, then the fraction of the atomic volume that is occupied by the nucleus is
	(a) 1.0×10^{-3} (b) 5.0×10^{-5} (c) 2.5×10^{-2} (d) 1.25×10^{-13}

	The same of an electron in the first Dalay shift of Water in 1967. The same like
	The energy of an electron in the first Bohr orbit of H atom is -13.6eV. The possible energy value(s) of the excited state(s) for electrons in Bohr orbits to hydrogen is(are)
41	(a) -3.4eV (b) -4.2eV (c) -6.8eV (d) +6.8eV
	(a) -3.46V (b) -4.26V (c) -0.06V (d) +0.06V
42	The total number of valence electrons in $4.2 gm$ of N_3^- ion is (N_A is the Avogadro's
	number)
	(a) $1.6N_A$ (b) $3.2N_A$ (c) $2.1N_A$ (d) $4.2N_A$
43	The ionization energy of hydrogen atom is -13.6 eV. The energy required to excite the
	electron in a hydrogen atom from the ground state to the first excited state is
	(Avogadro's constant = 6.022×10^{23})
	(a) $1.69 \times 10^{-20} J$ (b) $1.69 \times 10^{-23} J$ (c) $1.69 \times 10^{23} J$ (d) $1.69 \times 10^{25} J$
	The frequency of one of the lines in Paschen series of hydrogen atom is 2.340×10^{11} Hz. The
44	quantum number n_2 which produces this transition is
	(a) 6 (b) 5 (c) 4 (d) 3
45	
45	The following graph corresponds to
	\uparrow
	a) 3 s b) 3 p c) 4 p d) 5 d
	1) a, b, c only 2) a & b only 3) a, b & c only 4) a, c & d only
46	
46	In which of the following atoms 2s orbital has higher energy?
	1) K 2) Na 3) H 4) Li
	Which of the following statement about an electron with m= +3 is incorrect?
47	(1) The electron could be in the fourth shell (2) The electron is in a spherical orbital
	(3) The electron may have $s = +1/2$ (4) The electron may have in a f-orbital
48	The total number of orbitals in first shell containing g-subshell will be?
	(1) 9 (2) 16 (3) 25 (4) 36
40	
49	Arrange in decreasing order the energy of 2s orbital in the following atoms H, Li, Na, K
	1) $E_{2s(H)} > E_{2s(Li)} > E_{2s(Na)} > E_{2s(K)}$ 2) $E_{2s(H)} > E_{2s(Na)} > E_{2s(Li)} > E_{2s(K)}$
	3) $E_{2s(H)} > E_{2s(Na)} = E_{2s(K)} > E_{2s(Li)}$ 4) $E_{2s(K)} < E_{2s(Na)} < E_{2s(Li)} < E_{2s(H)}$
50	In which of the following orbital diagrams are both Pauli's exclusion principle and Hund's rule are
	violated?
	(1) (2) (3) (3) (4) (4)
51	Which of the following statement in relation to the hydrogen atom is correct?
	1) 3s, 3p and 3d orbitals all have the same energy
	3) 3s and 3p orbitals are of lower energy than 3d orbital 3) 3p orbital is lower in energy than 3d orbital
	4) 3s orbital is lower in energy than 3p orbitals
	The correct order of relative stability of half filled and completely filled shells is:
52	1) $p^3 < d^5 < d^{10} < p^6$ 2) $d^5 < p^3 < d^{10} < p^6$ 3) $d^5 < p^3 < d^{10} < p^6$ 4) $p^3 < d^{10} < d^5 < p^6$

53	An atom has 35 m it is :- (1) 2	(2) 4	mic number equ	(3) 6	aber of electrons with n	n = 2, m = 0 in
54	2) An electron in a 3) Z_{eff} for an elect	ron in a 2s orbita the 2s orbital has t ron in 1s orbital is	l is the same as the same energy the same as Z_q	Z_{eff} for an electro as an electron in for an electron in	n is a $2p$ orbital the $2p$ orbital	
55	Match the following Column-I (i)X-rays (ii) UV-rays (iii) Long radio was (iv) Microwave 1) i-d, ii-c, iii-a, iv	aves	(b) $v = (c)^{v}$ (d) $v = (d)^{v}$	$= 10^{0} - 10^{4} Hz$ $= 10^{10} Hz$ $= 10^{16} Hz$ $= 10^{18} Hz$) i-a, ii-d, iii-c, iv-d	
56		is illuminated with	radiation of wav	•	the stopping potential is a copping potential is $\frac{V}{4}$.	
57	Arrange the follo A: Blue light 1) D, B, A, C	B: Yellow l	ight C: Σ	per quantum in X-ray , A, B, D	the order of increasin D: Radiowave 4) B, A, D, C	g energy:
58	1) β - particle, v 2) γ - rays, whic 3) helium atoms,	eriment which established which impinged on a which impinged which impinged	n a metal foil a metal foil and o on a metal foil	nd got absorbed ejecred electrons and got scattere	d	ı of:
59	Ψ ₃₂₀ Represented 1) 3s Orbital		pital	3) 3p Orbital	4) 3f Orbital	

TT	-X7
ĸ	H: Y

1	ANS-4
2	ANS-3
3	ANS-3
	hv = W + K.E; $W = hv - K.E$
	: (3)
4	ANS-1
	$E = \frac{hc}{\lambda}; \frac{1}{\lambda} = R[\frac{1}{n_1^2} - \frac{1}{n_2^2}]$
	: (1)
5	ANS-1
	$\Delta E = Rhc \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$
	(3)
6	ANS-1
	$: V_n = \frac{v_1}{n}$
	: (1)
7	ANS-2
	$\lambda = V \; ; \; \therefore \lambda = \frac{h}{mV} \; ; \; \; \lambda = \frac{h}{m \times \lambda}$
	$\lambda^2 = \frac{h}{m} \qquad \lambda = \sqrt{\frac{h}{m}}$
	(2)
8	ANS-3
	$: \Delta x. \Delta p \ge \frac{h}{4\pi} \; ; \; \Delta x^2 \ge \frac{h}{4\pi} \; ; \; \Delta x \ge \sqrt{\frac{h}{4\pi}}$
	$\Delta v \ge \frac{h}{4\pi m \Delta x}; \Delta v \ge \frac{1}{2m} \sqrt{\frac{h}{\pi}}$
	: (3)
9	ANS-1
	$\lambda = \frac{h}{mv}$; $\frac{\lambda_A}{\lambda_B} = \frac{m_B.v_B}{m_A.v_A}$
	: (1)
10	ANS-4
	$\Delta x.m.\Delta v = \frac{h}{4\pi} \Delta x = \frac{h}{4\pi.m.\Delta v}$

: (4)

11	ANS-4
	Conceptual
	: (4)
12	ANS-2
	:Conceptual
	: (2)
13	ANS-2
	:Conceptual
	: (2)
14	ANS-1
	$Avg.at.wt = \frac{\sum \%abundance \times Atomicweight}{T_{cont}}$
	1 otalratio
	: (1)
15	ANS-2
	$v_1 = \frac{c}{\lambda_1}; v_2 = \frac{c}{\lambda_2}$ $\frac{E_1}{E_2} = \frac{v_1}{v_2}$
	(2)
16	ANS-2
	$K.E_2 = v_2 - v_0$
	$\frac{K.E_2}{K.E_1} = \frac{v_2 - v_0}{v_1 - v_0}$
	(2)
17	ANS-2
	As the size of atom increases, energy required to over come the attractive forces on the outer most electron
	decreases.
	: (2)
18	ANS-2
	$hv = W + \frac{1}{2}mv^2; \frac{hC}{\lambda} = W + \frac{1}{2}mv^2$
	2 2 2
	$(\because 1eV = 1.6 \times 10^{-19} J)$ $W = 2.13 \times 1.6 \times 10^{-19} J$
19	: (2) ANS-2
19	
	$K.E = h(v - v_0) D \frac{1}{2} m v^2 = h(v - v_0)$
	$v^2 = \frac{2h(v - v_0)}{v}, v_1^2 = \frac{2h(2f_0 - f_0)}{v}(1)$
	m m
	$v_2^2 = \frac{2h(5f_0 - f_0)}{m} - \dots - 2$
	": (2)
00	ANC 1
20	ANS-1
	Balmer series - visible region, for the line of balmer series energy is maximum : (1)
	(-)

21	ANS-2
	E_1 E_2 $-5E_3$ $-$
	$\frac{E_1}{3^2} - \frac{E_1}{2^2} = E \implies \frac{-5E_1}{36} = E$
	$E_1 = -7.2E$; $I.E = +E_1 = +7.2 E$
	(2)
22	ANS-2
	Z^2
	$E\alpha \frac{Z^2}{n^2}$
	(2)
23	ANS-1
	_ 1 1 1,
	$\overline{v} = \frac{1}{\lambda} = R[\frac{1}{n_1^2} - \frac{1}{n_2^2}]$
	: (1)
24	ANS-2
	$r_n = 0.529 \times n^2 A^0$; diameter = 2r; $r = \frac{diameter}{2}$
	(2)
25	ANS-2
	$r_n = n^2 r_1$; $m v_n r_n = \frac{nh}{2\pi}$; $\lambda = \frac{h}{m v_n}$
	(2)
26	ANS-3
	Ionization energy $-217.6 = -13.6 \times \frac{Z^2}{1^2}$; $Z = 4m$
	So, it is ${}_{4}^{9}Be^{3+}$; no. of neutrons 9 - 4 = 5
	: (3)
27	ANS-1
	$r_1 - r_2 = 0.529 \left(n_1^2 - n_2^2 \right)$
	(1)
28	ANS-2
48	ANS-2
	$I.E = -E_1 E_n \propto \frac{z^2}{n^2} \Rightarrow \frac{(E_1)_{He^+}}{(E_1)_{z_1+2}} = \frac{(z_{He^+})^2}{(z_{z_1+2})^2}$
	$I.E = -E_1 - n^2 \qquad (E_1)_{Li^{*2}} \qquad (z_{Li^{*2}})^2$
	(2)
29	ANS-2
	$E_H\left(\frac{1}{n_1 2} - \frac{1}{n_2 2}\right) = 1.312 \times 10^6 \left(\frac{1}{1} - \frac{1}{4}\right)$
	$ \begin{array}{ccc} -(n_1 2 & n_2 2) & (1 & 4) \end{array} $
	: (2)
L	

30	ANS-4
	$\lambda = \frac{h}{\sqrt{2mkE}}$
	$\sqrt{2mkE}$
	: (4)
31	ANS-3
	paramagnetic property depends upon the number of unpaired electrons, higher the no. of unpaired electrons, higher the paramagnetic property.
	: (3)
32	ANS-3
	$\mu = \sqrt{n(n+2)}$; $n = n$ of unpuried electory
	(3)
33	ANS-3
	Conceptual
	: (3)
34	ANS-3
	: Conceptual
35	: (3) ANS-4
33	
	Sol: (4) 1s-orbital is of lowest energy. Absorption of photon can raise the electron in higher energy state but emission is not possible.
36	ANS-1
	Sol: (1) $\lambda \propto \frac{1}{m}, m_e < m_H < m_{He} < m_{Ne}$
	m:
37	ANS-1
	$(1) \qquad \Delta p = m \times \Delta v \; ; \; \Delta p = 9.1 \times 10^{-28} \times 3.0 \times 10^{4} \times \frac{0.001}{100} \; ; \; \Delta P = 2.73 \times 10^{-24}$
	Hence $\Delta x = \frac{h}{\Delta p \times 4\pi} = \frac{6.626 \times 10^{-27}}{2.73 \times 10^{-28} \times 4 \times 3.14}$; $\Delta x = 1.92 \text{ cm}$.
38	ANS-4
	(4) The oxidation state of nitrogen in HN_3 is $-\frac{1}{3}$; HN_3 : $1+3x=0 \Rightarrow 3x=-1$ or $x=\frac{-1}{3}$
39	ANS-4
	Sol: (4) The product of uncertainties in the position and the momentum of a sub atomic
	particle = $h/4\pi$. Since Δx is same for electron and helium so Δp must be same for
	both the particle i.e. 50 × 10 ⁻²⁶ kg ms ⁻¹ (given).
40	ANS-D
	Sol: (d) Radius of nucleus = $1.25 \times 10^{-13} \times A^{1/3}$ cm = $1.25 \times 10^{-13} \times 64^{1/3} = 5 \times 10^{-13}$ cm
	Radius of atom = $1\text{Å} = 10^{-8} \text{ cm}$.; $\frac{\text{Volume of nucleus}}{\text{Volume of atom}} = \frac{(4/3)\pi (5 \times 10^{-13})^3}{(4/3)\pi (10^{-8})^3} = 1.25 \times 10^{-13}$.
41	ANS-A
	Sol: (a) Values of energy in the excited state $= -\frac{13.6}{n^2} \epsilon V = \frac{-13.6}{4} = -3.4 \epsilon V$ in which $n = 2, 3, 4 \ etc$.
	n +

42 ANS-A Sol: (a) 42g of N_3^- ions have $16N_A$ valence electrons 4.2g of N_3^- ion have $=\frac{16N_A}{42}\times 4.2 = 1.6N_A$ 43 ANS-B Sol: (b) $E = \frac{-13.6}{n^2} = \frac{-13.6}{4} = -3.4 \text{ eV}$ We know that energy required for excitation $\Delta E = E_2 - E_1$ = -3.4 - (-13.6) = 10.2 eV Therefore energy required for excitation of electron per atom $=\frac{10.2}{6.02\times10^{23}}=1.69\times10^{-23}J$ ANS-B 44 Sol: (b) $\overline{v} = \frac{1}{\lambda} = R_H \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] = \frac{1}{\lambda} = R_H \left[\frac{1}{3^2} - \frac{1}{n_2^2} \right] = n_2 = 3$ for Paschen series. 45 ANS-4 46 ANS-3 (3) Greater the effective nuclear charge lesser the energy of the orbital Energy of 2s orbital $\infty \frac{1}{}$ ANS-2 47 48 ANS-1 ANS-1 49 (1) $E_{2s(H)} > E_{2s(U)} > E_{2s(Na)} > E_{2s(K)}$ ANS-4 50 ANS-3 51 **52** ANS-3 (3) Completely filled and half filled p - sub - shells are more stable than d - sub - shells 53 ANS-2 (2)A = 35; Z = 171s² 2s² 2p³ 3s² 3p² क् वाक्रा 54 ANS-4 55 ANS-1 ANS-1 56 57 ANS-1 ANS-4 58

59

ANS-2

