

IA AND IIA GROUP ELELMENTS

			., .	., .
1	Which of the following	_		
	(1) Be(OH) ₂	(2) Mg(OH) ₂		
2		_	om is having complete octe	
	(1) BeCl ₂ (dimer)	(2) BeH ₂ (dimer)	(3) BeH ₂ (s)	(4) BeCl ₂ (s)
3	Among CaH ₂ , BeH ₂ ,B	aH ₂ , the order of ion	ic character is [NEET-2018	3]
	$1) BeH_2 < CaH_2 < BaH_2$	I_2	2) $BaH_2 < BeH_2 < CaH_2$	
	$3) BeH_2 < BaH_2 < CaH$	I_2	4) $CaH_2 < BeH_2 < BaH_2$	
4	On heating which of th	e following releases	CO ₂ most easily	[AIPMT- 2015]
	$1 K_2 CO_3$ 2)	Na ₂ CO ₃	3) <i>MgCO</i> ₃	4) CaCO ₃
5		caline earth's metal :	sulphates in water decreas	ses in the sequence:[AIPMT -
	2014]	2) = = = = =	- 2)	0
				4) $Mg > Ca > Sr > Ba$
6	Property of the alkaline earth metals that increases with their atomic number [AIPMT -2011]			
	(1) Solubility of their hyd	roxides in water	(2) Solubility of their sulpha	ates m water
_	(3) Ionization energy		(4) Electronegativity	
7	_	_	d to react with sodium hyd	_
	(1) CaO (2) SiO ₂	(3) BeO	$(4) B_2 O_3$
8		-	gy is higher than the lattic	
	(1) MgSO ₄	(2) RaSO ₄	(3) SrSO ₄	(4) BaSO ₄
9		creasing thermal stal	bility of K ₂ CO ₃ , MgCO ₃ , C	CaCO ₃ and BeCO ₃ is
	[AIPMT 2006]	60 T 60	(a) 14 co . D co . 4	
	(1) BeCO ₃ <mgco<sub>3<c< th=""><th>aCO₃<k<sub>2CO₃</k<sub></th><th>(2) MgCO₃ < BeCO₃ < C (4) BeCO₃, <mgco<sub>3 < K</mgco<sub></th><th>CaCO₃<k<sub>2CO₃</k<sub></th></c<></mgco<sub>	aCO ₃ <k<sub>2CO₃</k<sub>	(2) MgCO ₃ < BeCO ₃ < C (4) BeCO ₃ , <mgco<sub>3 < K</mgco<sub>	CaCO ₃ <k<sub>2CO₃</k<sub>
10	A metal M forms wate	r soluble <i>MSO</i> 4 and a	umphoteric MO. MO in aq	ueous solution forms insoluble
	$M(OH)_2$, soluble in N	aOH. The metal M is	[AIEEE-2002]	
	1) Be 2)	Mg	3) Ca	4) Si
11	Which of the alkali me	etal chlorides (MCl)	form is dihydrate salt ((M)	$Cl.2H_2O$) easily [NEET-2019]
	1) <i>LiCl</i> 2) CsCl	3) RbCl	4) KCl
12	The alkali metals form	salt-like hydrides by	the direct synthesis at elev	ated temperature. The thermal
	stability of these hydri		_	[AIPMT 2005]
	(1) LiH > NaH > KH >		(2) CsH > RbH > KH > N	
	(3) KH > NaH > LiH >	CsH > RbH	(4) NaH > LiH > KH > R	bH > CsH

13						
	The correct order of the mobility of the alkali metal ions in aqueous solution is [AIPMT 2008, 2003]					
	(1) $Rb^+ > K^+ > Na^+ > Li^+$ (3) $Na^+ > K^+ > Rb^+ > Li^+$		* /	(2) $Li^+ > Na^+ > K^+ > Rb^+$		
	**			.1		
14	In the case of alkali metals, the covalent character decreases in the order [AIPMT 2009]					
	(1) MF > MCl > MBr > MI (3) MI > MBr > MCl > MF			(2) MF > MCl > MI > MBr		
			(4) MC1 > MI > MBr >	> MF		
15	Which one of the	following compounds	is a peroxide?	[AIPMT -2012]		
	(1) KO ₂	(2) BaO ₂	$(3) \text{ MnO}_2$	(4) NO ₂		
16						
16	Which of the follow	wing on thermal decor	mposition yields a basic as w	ell as acidic oxide?[AIPMT -2013]		
	1) NaOH	2) <i>KCIO</i> ₃	$3) CaCO_3$	4) NH ₄ NO ₃		
17	Water glass is	[AIIMS-2017]				
	1) Na ₂ SiO ₃	2) Mg ₂ Si	3) SiCl ₄	4) $Ca(H_2PO_4)$		
10						
18	Crude sodium chl	loride obtained by cry	stallisation of brine solution	does not contain. [NEET-2019]		
	 MgSO₄ 	2) Na_2SO_4	3) MgCl ₂	4) CaSO ₄		
19	The solubilities of	carbonates decrease	down the IIA - group due to	decreases in [AIEEE-2004]		
	1) lattice energies of		hydration energies of			
	3) inter - ionic attractions 4) entropy of solution formation			ormation		
20	In curing cement	plaster, water is sprink	kled from time to time. This l	helps in [AIEEE-2003]		
	1) Keeping it cool					
	1) Keeping it coor					
	2) developing interlo	ocking needle like crysta	als of hydrated silicates			
	developing interlo hydrating sand an	nd gravel mixed cement	als of hydrated silicates			
01	developing interlo hydrating sand an convertings and in	nd gravel mixed cement nto silicic acid	-	ak Which are of the colutions will		
21	developing interloady by drating sand and and convertings and in Equimolar solution.	nd gravel mixed cement nto silicic acid ns of the following we	re prepared in water separat	ely. Which one of the solutions will		
21	2) developing interlo 3) hydrating sand an 4) convertings and in Equimolar solution record the highest	nd gravel mixed cement nto silicic acid ns of the following we pH? [AIPMT 2007]	re prepared in water separat			
-	2) developing interlo 3) hydrating sand an 4) convertings and in Equimolar solution record the highest (1) CaCl ₂	nd gravel mixed cement nto silicic acid ns of the following we pH? [AIPMT 2007] (2) SrCl ₂	re prepared in water separat (3) BaCl ₂	(4) MgCl ₂		
21	2) developing interlo 3) hydrating sand an 4) convertings and in Equimolar solution record the highest (1) CaCl ₂	nd gravel mixed cement nto silicic acid ns of the following wer pH? [AIPMT 2007] (2) SrCl ₂ owing oxides is not exp	re prepared in water separat (3) BaCl ₂ pected to react with sodium l	(4) MgCl ₂ hydroxide? [AIPMT 2009]		
22	2) developing interlo 3) hydrating sand an 4) convertings and in Equimolar solution record the highest (1) CaCl ₂ Which of the follo (1) CaO	nd gravel mixed cement nto silicic acid ns of the following wer pH? [AIPMT 2007] (2) SrCl ₂ wing oxides is not exp (2) SiO ₂	re prepared in water separat (3) BaCl ₂ pected to react with sodium l (3) BeO	(4) MgCl ₂ hydroxide? [AIPMT 2009] (4) B ₂ O ₃		
-	2) developing interlo 3) hydrating sand an 4) convertings and in Equimolar solution record the highest (1) CaCl ₂ Which of the follo (1) CaO	nd gravel mixed cement nto silicic acid ns of the following wer pH? [AIPMT 2007] (2) SrCl ₂ wing oxides is not exp (2) SiO ₂	re prepared in water separat (3) BaCl ₂ pected to react with sodium l	(4) MgCl ₂ hydroxide? [AIPMT 2009] (4) B ₂ O ₃		
22	2) developing interlo 3) hydrating sand an 4) convertings and in Equimolar solution record the highest (1) CaCl ₂ Which of the follo (1) CaO	nd gravel mixed cement nto silicic acid ns of the following wer pH? [AIPMT 2007] (2) SrCl ₂ wing oxides is not exp (2) SiO ₂	re prepared in water separat (3) BaCl ₂ pected to react with sodium l (3) BeO	(4) MgCl ₂ hydroxide? [AIPMT 2009] (4) B ₂ O ₃		
22	2) developing interlo 3) hydrating sand an 4) convertings and in Equimolar solution record the highest (1) CaCl ₂ Which of the follo (1) CaO The bleaching acti	nd gravel mixed cement nto silicic acid ns of the following wer pH? [AIPMT 2007] (2) SrCl ₂ owing oxides is not exp (2) SiO ₂ ion of bleaching powd	re prepared in water separat (3) BaCl ₂ pected to react with sodium l (3) BeO ler is due to the formation of	(4) MgCl ₂ hydroxide? [AIPMT 2009] (4) B ₂ O ₃ [[AIPMT - 2013] 4) Ca(ClO ₃) ₂		
22	2) developing interlo 3) hydrating sand an 4) convertings and in Equimolar solution record the highest (1) CaCl ₂ Which of the follo (1) CaO The bleaching action 1) CaCl ₂ The correct form	nd gravel mixed cement into silicic acid ins of the following were pH? [AIPMT 2007] (2) SrCl ₂ wing oxides is not exp (2) SiO ₂ ion of bleaching powd 2) CaSO ₄	(3) BaCl ₂ pected to react with sodium l (3) BeO ler is due to the formation of 3) HClO is is [JIPMER-2018]	(4) MgCl ₂ hydroxide? [AIPMT 2009] (4) B ₂ O ₃ [AIPMT - 2013] 4) Ca(ClO ₃) ₂		
22	2) developing interlo 3) hydrating sand an 4) convertings and in Equimolar solution record the highest (1) CaCl ₂ Which of the follo (1) CaO The bleaching action 1) CaCl ₂ The correct form	nd gravel mixed cement nto silicic acid ns of the following wer pH? [AIPMT 2007] (2) SrCl ₂ owing oxides is not exp (2) SiO ₂ ion of bleaching powd	re prepared in water separat (3) BaCl ₂ pected to react with sodium l (3) BeO ler is due to the formation of	(4) MgCl ₂ hydroxide? [AIPMT 2009] (4) B ₂ O ₃ [[AIPMT - 2013] 4) Ca(ClO ₃) ₂		
22	2) developing interlo 3) hydrating sand an 4) convertings and in Equimolar solution record the highest (1) CaCl ₂ Which of the follo (1) CaO The bleaching act 1) CaCl ₂ The correct form 1) CaSO ₄ .4H ₂ O	nto silicic acid ns of the following web pH? [AIPMT 2007] (2) SrCl ₂ owing oxides is not exp (2) SiO ₂ ion of bleaching powd 2) CaSO ₄ ula for plaster of Pari	(3) BaCl ₂ pected to react with sodium l (3) BeO ler is due to the formation of 3) HClO is is [JIPMER-2018]	(4) MgCl ₂ hydroxide? [AIPMT 2009] (4) B ₂ O ₃ [[AIPMT - 2013] 4) Ca(ClO ₃) ₂ 4) CaSO ₄ .1H ₂ O		
22 23 24	2) developing interlo 3) hydrating sand an 4) convertings and in Equimolar solution record the highest (1) CaCl ₂ Which of the follo (1) CaO The bleaching act 1) CaCl ₂ The correct form 1) CaSO ₄ .4H ₂ O	nto silicic acid ns of the following web pH? [AIPMT 2007] (2) SrCl ₂ owing oxides is not exp (2) SiO ₂ ion of bleaching powd 2) CaSO ₄ ula for plaster of Pari	(3) BaCl ₂ pected to react with sodium l (3) BeO ler is due to the formation of 3) HClO is is [JIPMER-2018] 3) CaSO ₄ . $\frac{1}{2}$ H ₂ O	(4) MgCl ₂ hydroxide? [AIPMT 2009] (4) B ₂ O ₃ [[AIPMT - 2013] 4) Ca(ClO ₃) ₂ 4) CaSO ₄ .1H ₂ O		
22 23 24	2) developing interloady hydrating sand and and convertings and in Equimolar solution record the highest (1) CaCl ₂ Which of the folloa (1) CaO The bleaching act of the correct form 1) CaSO ₄ .4H ₂ O Which of the folloady hydrony hydr	nto silicic acid ns of the following were pH? [AIPMT 2007] (2) SrCl ₂ owing oxides is not exp (2) SiO ₂ ion of bleaching powd 2) CaSO ₄ rula for plaster of Pari 2) CaSO ₄ .2H ₂ O owing oxides is most ac 2) CaO	(3) BaCl ₂ pected to react with sodium l (3) BeO ler is due to the formation of 3) HClO is is [JIPMER-2018] 3) CaSO ₄ . $\frac{1}{2}$ H ₂ O cidic in nature? [NEET-2018 3) BaO	(4) MgCl ₂ hydroxide? [AIPMT 2009] (4) B ₂ O ₃ [[AIPMT - 2013] 4) Ca(ClO ₃) ₂ 4) CaSO ₄ .1H ₂ O		
22 23 24 25	2) developing interloady hydrating sand and and convertings and in Equimolar solution record the highest (1) CaCl ₂ Which of the folloa (1) CaO The bleaching act of the correct form 1) CaSO ₄ .4H ₂ O Which of the folloady Magnesium react	nto silicic acid ns of the following were pH? [AIPMT 2007] (2) SrCl ₂ owing oxides is not exp (2) SiO ₂ ion of bleaching powd 2) CaSO ₄ rula for plaster of Pari 2) CaSO ₄ .2H ₂ O owing oxides is most acc 2) CaO swith an element (X	(3) BaCl ₂ pected to react with sodium l (3) BeO ler is due to the formation of 3) HClO is is [JIPMER-2018] 3) CaSO ₄ . $\frac{1}{2}$ H ₂ O cidic in nature? [NEET-2018 3) BaO	(4) MgCl ₂ hydroxide? [AIPMT 2009] (4) B ₂ O ₃ [[AIPMT - 2013] 4) Ca(ClO ₃) ₂ 4) CaSO ₄ .1H ₂ O B] 4) BeO nd. If the ground state electronic		
22 23 24 25	2) developing interloady hydrating sand and and convertings and in Equimolar solution record the highest (1) CaCl ₂ Which of the folloa (1) CaO The bleaching act of the correct form 1) CaSO ₄ .4H ₂ O Which of the folloady Magnesium react	nto silicic acid ns of the following were pH? [AIPMT 2007] (2) SrCl ₂ owing oxides is not exp (2) SiO ₂ ion of bleaching powd 2) CaSO ₄ rula for plaster of Pari 2) CaSO ₄ .2H ₂ O owing oxides is most acc 2) CaO swith an element (X	(3) BaCl ₂ pected to react with sodium I (3) BeO ler is due to the formation of 3) HClO is is [JIPMER-2018] 3) CaSO ₄ . $\frac{1}{2}$ H ₂ O cidic in nature? [NEET-2018 3) BaO	(4) MgCl ₂ hydroxide? [AIPMT 2009] (4) B ₂ O ₃ [[AIPMT - 2013] 4) Ca(ClO ₃) ₂ 4) CaSO ₄ .1H ₂ O B] 4) BeO nd. If the ground state electronic		
22 23 24 25	2) developing interloady hydrating sand and and an and convertings and in Equimolar solution record the highest (1) CaCl ₂ Which of the folloa (1) CaO The bleaching action of CaSO ₄ .4H ₂ O Which of the folloady hydrogen and the folloady hydrogen action of (2) Magnesium reaction figuration of (2) Mg ₂ X ₃	nto silicic acid ns of the following were pH? [AIPMT 2007] (2) SrCl ₂ owing oxides is not exp (2) SiO ₂ ion of bleaching powd 2) CaSO ₄ rula for plaster of Pari 2) CaSO ₄ .2H ₂ O owing oxides is most ac 2) CaO is with an element (X X) is 1s ² 2s ² 2p ³ , the sin 2) Mg ₃ X ₂	(3) BaCl ₂ pected to react with sodium l (3) BeO ler is due to the formation of 3) HClO is is [JIPMER-2018] 3) CaSO ₄ . $\frac{1}{2}H_2O$ cidic in nature? [NEET-2018 3) BaO c) to form an ionic compoundinglest formula for this compositions.	(4) MgCl ₂ hydroxide? [AIPMT 2009] (4) B ₂ O ₃ [[AIPMT - 2013] 4) Ca(ClO ₃) ₂ 4) CaSO ₄ .1H ₂ O B] 4) BeO nd. If the ground state electronic pound is: [NEET-2018] 4) MgX ₂		
22 23 24 25 26	2) developing interloady hydrating sand and and and convertings and in Equimolar solution record the highest (1) CaCl ₂ Which of the folloady (1) CaO The bleaching action of CaSO ₄ .4H ₂ O Which of the folloady (1) MgO Magnesium reaction of (2) Mg ₂ X ₃ Out of BeF ₂ , MgF ₂	and gravel mixed cement into silicic acid ins of the following were pH? [AIPMT 2007] (2) SrCl ₂ (2) SrCl ₂ (2) SiO ₂ (3) SiO ₂ (4) SiO ₂ (5) CaSO ₄ (6) CaSO ₄ (7) CaSO ₄ (8) Wing oxides is most accompanies in the silicit and element (X in the silicit and elem	(3) BaCl ₂ pected to react with sodium l (3) BeO ler is due to the formation of 3) HClO is is [JIPMER-2018] 3) CaSO ₄ . $\frac{1}{2}H_2O$ cidic in nature? [NEET-2018 3) BaO c) to form an ionic compound mplest formula for this com	(4) MgCl ₂ hydroxide? [AIPMT 2009] (4) B ₂ O ₃ [[AIPMT - 2013] 4) Ca(ClO ₃) ₂ 4) CaSO ₄ .1H ₂ O B] 4) BeO nd. If the ground state electronic pound is: [NEET-2018] 4) MgX ₂ MS-2019]		
22 23 24 25 26	2) developing interloady hydrating sand and and anonvertings and in Equimolar solution record the highest (1) CaCl ₂ Which of the folloa (1) CaO The bleaching action of the correct form 1) CaSO ₄ .4H ₂ O Which of the folloady hydrogen in the follow hydrogen in	and gravel mixed cement into silicic acid ins of the following were pH? [AIPMT 2007] (2) SrCl ₂ owing oxides is not exp (2) SiO ₂ ion of bleaching powd 2) CaSO ₄ and for plaster of Pari 2) CaSO ₄ .2H ₂ O owing oxides is most acc 2) CaO is with an element (XiX) is 1s ² 2s ² 2p ³ , the sin 2) Mg ₃ X ₂ 2, CaF ₂ , SrF ₂ which has 2) MgF ₂	re prepared in water separate (3) BaCl ₂ pected to react with sodium I (3) BeO ler is due to the formation of 3) HClO is is [JIPMER-2018] 3) $CaSO_4 \cdot \frac{1}{2}H_2O$ cidic in nature? [NEET-2018 3) BaO (2) to form an ionic compound implest formula for this company $M_{\rm S}$	(4) MgCl ₂ hydroxide? [AIPMT 2009] (4) B ₂ O ₃ [[AIPMT - 2013] 4) Ca(ClO ₃) ₂ 4) CaSO ₄ .1H ₂ O B] 4) BeO nd. If the ground state electronic pound is: [NEET-2018] 4) MgX ₂		
22 23 24 25 26	2) developing interloady hydrating sand and and anonvertings and in Equimolar solution record the highest (1) CaCl ₂ Which of the folloa (1) CaO The bleaching action of the correct form 1) CaSO ₄ .4H ₂ O Which of the folloady hydrogen in the follow hydrogen in	and gravel mixed cement into silicic acid ins of the following were pH? [AIPMT 2007] (2) SrCl ₂ (2) SrCl ₂ (2) SiO ₂ (3) SiO ₂ (4) SiO ₂ (5) CaSO ₄ (6) CaSO ₄ (7) CaSO ₄ (8) Wing oxides is most accompanies in the silicit and element (X in the silicit and elem	(3) BaCl ₂ pected to react with sodium l (3) BeO ler is due to the formation of 3) HClO is is [JIPMER-2018] 3) CaSO ₄ . $\frac{1}{2}H_2O$ cidic in nature? [NEET-2018 3) BaO c) to form an ionic compound mplest formula for this com	(4) MgCl ₂ hydroxide? [AIPMT 2009] (4) B ₂ O ₃ [[AIPMT - 2013] 4) Ca(ClO ₃) ₂ 4) CaSO ₄ .1H ₂ O B] 4) BeO nd. If the ground state electronic pound is: [NEET-2018] 4) MgX ₂ MS-2019]		

29	Which of the following is an amphoteric hydroxide? [NEET -2019]				
	1) $Sr(OH)_2$	2) Ca(OH) ₂	3) $Mg(OH)_2$	4) Be(OH) ₂	
30	Enzymes that utilize ATP in phosphate transfer require an alkaline earth metal (M) as the cofactor: M				cofactor. M
	is [NEET - 2019] 1) Be	2) Mg	3) Ca	4) Sr	
31	The correct ord	er of hydration entl	nalpies of Alkali met	al ions is,	
	1) $Li^+ > Na^+ > K^+$	$> Rb^+ > Cs^+$	2) $Li^+ < Na^+ < K^+$	$< Rb^+ < Cs^+$	
	3) $Li^+ > Na^+ = K^+$	$T = Rb^+ > Cs^+$	4) $Na^+ > Cs^+ > K^+$	$> Rb^+ > Li^+$	
					**
32	-		d as electrodes in		
	1) <i>Na,Li</i>	2) K, Cs	3) <i>Rb</i> , <i>L</i>	<i>i</i> 4) <i>Li</i> ,	, CS
33	The alloy 'wh	nite metal' conta	ins metals are		
	1) $Li + Pb$	2) $Na+F$	Pb 3) Al +	+ <i>Pb</i> 4) 2	4l + Li
34	The alkali met	tal that cannot re	eacts with hydroge	en at 693 K is	
	1) Na	2) Li	3) Rb	4) Cs	
35	_	llowing has the low	~ ~		
	1) <i>Be</i>	2) <i>Mg</i>	3) <i>Ca</i>	4) <i>Sr</i>	
36	_	-	nest standard reduc	~ -	D
	1) <i>Be</i>	2) <i>Mg</i>	3)	Са	4) <i>Ba</i>
37		oounds are largely vity of beryllium is			
	_	ower of Be^{2+} is ve			
	3) Beryllium at	om is very larger	, ,		
	4) Beryllium is				
38	Plaster of paris	•	2) (%)	i into CaCO	
	1) Giving off C	<u>~</u>		nging into $CaCO_3$	
39	3) Uniting with		ulphates in water decr	ing out water	
	1) $Sr > Ca > M$		2) Ba > Mg	•	
	3) $Mg > Ca > S$	Sr > Ba	4) $Ca > Sr$	> Ba > Mg	
40	On heating which	of the following relea	ases CO_2 most easily	?	
	1) Na_2CO_3	$2) MgCO_3$		4) K_2CO_3	
	Which of the follows 1) MgO	ving oxides is most aci 2) BeO	idic in nature ? 3) BaO	4) <i>CaO</i>	
41	1) MgO	2) BeO	3) BuO	4) CaO	
42	The product obta	ined on heating LiN(O ₃ will be:		
	-	_	3) $Li_2O + NO_2 + O_2$	4) $Li_3N + O_2$	

	The by product of Solvay process is:					
	1) <i>NH</i> ₄ <i>Cl</i>	2) <i>CaCl</i> ₂	3) <i>N</i> .	H_3	4) <i>CO</i> ₂	
4.4	A minture of V m	rolog of Li CO, and V ma	alas af V CO is hasta	d. The velouse of CC) men durand at CTD	
44	A mixture of X moles of Li ₂ CO ₃ and Y moles of K ₂ CO ₃ is heated. The volume of CO ₂ produced at S is:				D ₂ produced at STP	
	1) 22.4 X	2) 22.4 Y	3) 44.8 (X + Y)	4) 22.4 (X + Y)		
			KEY			
1	ANS-2					
2	ANS-4					
3	ANS-1					
	: (1)					
	: Correct order of io	onic character is: $BeH_2 < Co$	$aH_2 < BaH_2$			
4	ANS-3					
	: (3)	: (3)				
	: Thermal stability	increases in IIA gorup carbo	onates			
5	ANS-4					
	: (4) : Solubility of IIA g	roup sulphates decreases				
6	ANS-1					
	: (1)					
	t: The solubility of a (a) lattice energy, a	m ionic compound depends	on two factors:			
	(b) hydration energy In case of alkaline metal hydroxides, the lattice energy decreases as we move down the group. This decre					
	In case of alkalme	-	e energy decreases as w	e move down the grou	n This decrease is	
		-		e move down the grot	p. This decrease is	
7		metal hydroxides, the lattic		e move down the grou	p. This decrease is	
7	more than the decre ANS-1 : (1)	metal hydroxides, the lattic ease in the hydration energy	down the group.		-	
7	more than the decre ANS-1 : (1) :: CaO being a basic	metal hydroxides, the lattic	down the group.		-	
7	more than the decre ANS-1 : (1) :: CaO being a basic	metal hydroxides, the lattice ease in the hydration energy c oxide does not react with	down the group.		-	
	more than the decre ANS-1 : (1) :: CaO being a basic and B ₂ O ₃ (acidic of ANS-1 : (1)	metal hydroxides, the lattice ease in the hydration energy c oxide does not react with xide) react with NaOH.	v down the group. NaOH, however SiO ₂ (acidic oxide), BeO (ar	nphoteric oxide)	
	more than the decre ANS-1 : (1) :: CaO being a basic and B ₂ O ₃ (acidic of ans-1) : (1) ; When hydration e	metal hydroxides, the lattice ease in the hydration energy c oxide does not react with xide) react with NaOH.	y down the group. NaOH, however SiO ₂ (acidic oxide), BeO (ar	nphoteric oxide)	
	more than the decre ANS-1 : (1) : CaO being a basic and B ₂ O ₃ (acidic of ANS-1 : (1) ; When hydration ealkaline earth metal	metal hydroxides, the lattice ease in the hydration energy c oxide does not react with xide) react with NaOH.	y down the group. NaOH, however SiO ₂ (acidic oxide), BeO (ar	nphoteric oxide)	
	more than the decre ANS-1 : (1) :: CaO being a basic and B ₂ O ₃ (acidic of ans-1) : (1) ; When hydration end alkaline earth metal earth metal alkaline earth metal earth e	metal hydroxides, the lattice ease in the hydration energy coxide does not react with xide) react with NaOH. nergy exceeds lattice energy laulphates decreases in the CaSO ₄ > SrSO ₄ > BaSO ₄	y down the group. NaOH, however SiO ₂ (y, the compound become	acidic oxide), BeO (ar	nphoteric oxide)	
	more than the decre ANS-1 : (1) :: CaO being a basic and B ₂ O ₃ (acidic of ans-1) : (1) ; When hydration end alkaline earth metal earth metal alkaline earth metal earth e	metal hydroxides, the lattice ease in the hydration energy c oxide does not react with xide) react with NaOH.	y down the group. NaOH, however SiO ₂ (y, the compound become	acidic oxide), BeO (ar	nphoteric oxide)	

ANS-1 9 :(1) : More the polarising power of cation more is the distortion on CO₃²⁻ ion. More will be the instability. Hence the order of increasing thermal stability is $BeCO_3 \le MgCO_3 \le CaCO_3 \le K_2CO_3$. 10 ANS-1 : (1) : BeSO4 is highly soluble in water. Beo is amphoteric $Beo + H_2O \rightarrow Be(OH)_1 \downarrow Be(OH)_2 + 2NaOH \rightarrow Na_2 \lceil Be(OH)_4 \rceil$ ANS-1 11 :(1) : Lithium forms LiCl.2H2O 12 ANS-1 Key: (1) Hint: LiH > NaH > KH > RbH > CsH ANS-1 13 : (1) t: mobility $\alpha \frac{1}{\sin \alpha} Rb^+ > K^+ > Na^+ > Li^+$ 14 ANS-3 : (3) : Alkali metals are highly electropositive and halogens are electronegative. Thus for the halides of a given alkali metal, the covalent character decreases with increase in electronegativity of halogens. Order of covalent character of halides is MI > MBr > MCl > MF 15 ANS-2 : (2) : BaO, has peroxide linkage. 16 ANS-3 : (3) $CaCO_3 \rightarrow CaO + CO_2$ Basic oxide + CO_2 Acidic oxid 17 | ANS-1 : (1) : Water glass is Na2SiO3 ANS-1 18 : (1) : Conceptual ANS-2 19

: In the presence of very small amount of dilute acid, it gives nascent oxygen it acts as bleaching agent.

20	ANS-2
	: (2)
	: Solubilite decreases when lattice energy increases Hydration energy decrease.
21	ANS-3
	(3)
20	: Conceptual
22	ANS-1
	: (1) : CaO being a basic oxide does not react with NaOH, however SiO ₂ (acidic oxide), BeO (amphoteric oxide)
23	ANS-3
24	ANS-3
	: (3)
	: plaster of paris $-CaSO_4 \cdot \frac{1}{2}H_2O$
25	ANS-4
	: (4) : BeO
	Order of basic nature is BeO <mgo<cao<bao< th=""></mgo<cao<bao<>
26	ANS-2
	: (2)
	: Mg ₃ X ₂
27	ANS-1
	: (1)
	BeF_2 is more soluble
28	ANS-2
	: (2)
	: Conceptual
29	ANS-4
	: (4)
	: Be(OH) ₂ is an amphoteric in nature
20	ANS-2
30	: (2)
	: Conceptual
31	Ans-1
32	Ans-2
33	Ans-1
34	ANS-2
35	ANS-2
36	ANS-1
37	ANS-2
0.	

ANS-3
ANS-3
ANS-2
ANS-2
ANS-3
ANS-2
ANS-1