III-A & IV-A GROUP ELEMENTS | 1 | Statements regarding the general characteristics of IIIA group elements i) The decreasing order of E.N. of IIIA group element is B > T1 > In > Ga > A1 | | | | |----|--|--|--|----------------------------------| | | ii) The $E_{M^{+3}/M}^0$ values decreases in the order T1 > In > Ga > A1 | | | | | | iii) Ga has high melting point because of its polymeric structure | | | | | | The correct statements in above are 1) (i) and (ii) are correct 2) (ii) and (iii) are correct | | | orract | | | 3) only (ii) is correct | cci | 4) (i) & (iii) are con | | | 2 | Regarding III A group | elements the incorrect state | tement is | | | | 1) $MP - B > In > Al$ | | 2) $EN - B > Tl > In$ | a > Ga > Al | | | 3) $IP_1 - B > Tl > Ga$ | > Al > In | 4) Density - $Tl > In$ | > Ga > Al > B | | 3 | Group 13 elements she | ow +1 and +3 oxidation sta | tes. Relative stability of +3 | oxidation state may be given | | | as
$1.Ti^{3+} > In^{3+} > Ga^{3+} >$ | .34 _34 | 34 - 34 - 34 - 34 | _ 3+ | | | $1.Ti^{3+} > In^{3+} > Ga^{3+} > $
$3.Al^{3+} > Ga^{3+} > Ti^{3+} > $ | | $2. B^{3+} > Al^{3+} > Ga^{3+} > In^{3+}$
$4. Al^{3+} > B^{3+} > Ga^{3+} > Ti^{3+}$ | 7 21 | | 4 | | | $4.Al^{-} > B^{-} > Ga^{-} > 11^{-}$ | > In | | 4 | Which species does n | | 2) [C-12] ³ - | 4) [t. p.] ³ - | | | 1) [BF ₆] ³⁻ | 2) [AlF ₆] ³⁻ | 3) $\left[GaF_{6}\right]^{3}$ | 4) $\left[InF_6\right]^{3-}$ | | 5 | Which of the followin | g structure is similar to gra | phite? | | | | 1) BN | 2) B | 3) B ₄ C | 4) B ₂ H ₆ | | 6 | The number B-O-B li | nkage in trimetaborate and | the anionic part of borax is | i — | | | 1) 3, 5 | 2)5, 3 | 3) 0, 5 | 4) 0, 4 | | 7 | From the B_2H_6 all the | ne following can be prepare | ed except : | | | | 1) H ₃ BO ₃ | $2) \left[BH_2 (NH_3)_2 \right]^{\dagger} \left[$ | $[BH_4]^-$ 3) $B_2(CH_3)_6$ | 4) NaBH ₄ | | 8 | The number of possib | le isomers for disubstituted | borazine (B ₃ N ₃ H ₄ X ₂) is | /are | | | (1) 4 | (2) 3 | (3) 2 | (4) 1 | | | | • | (3) 2 | (4) 1 | | 9 | | ctron bond is present in | 2) P.Cl | 4) 4[C] | | | 1) B_2H_6 | 2) <i>NH</i> ₃ | 3) <i>BCl</i> ₃ | 4) AlCl ₃ | | 10 | Moissan boron is | | | | | | 1) 95-98% pure amorphous boron 2) 75-78% pure amorphous boron 3) 95-98% pure crystalline boron 4) 75-78% pure crystalline boron | | | | | | | | 4) 75-78% pure cryst | annie ooron | | 11 | Borax glass is a mixtur
1) $NaBO_2 + B_2O_3$ | e of
2) $Na_2B_4O_7 + B_2O_3$ | 3) $H_2B_4O_7 + B_2O_3$ | 4) $Na_2B_4O_7.10H_2O + B_2O_3$ | | | | 2) 11422407 + 11203 | $J_1 I_1 2D_4 O_7 + D_2 O_3$ | $1/110_2D_4O_7.1011_2O+D_2O_3$ | | 12 | Inorganic benzene is | | | | | | 1) $B_3H_3N_3$ | 2) BH_3NH_3 | 3) $B_3N_3H_6$ | 4) $H_3B_3N_6$ | | 13 | In diborane, boron ato | ms undergo Type of hy | _ | _ | | | 1) <i>sp</i> | $2) sp^2$ | 3) sp ³ | 4) sp^3d | | L | | | | | | | : (3)
:In B ₂ H ₆ the hybridization | on of at boran $\rightarrow sp^3$ | | | |----|---|--|--|------------------------------------| | 14 | Total number of electrons shared between two B-H-B atoms in B_2H_6 | | | | | | | 2.3 | 3. 4 | 4. 6 | | 15 | Which is arachno borane? 1. B ₅ H ₁₁ | | 3. B ₂ H ₆ | 4. B_2H_5 | | 16 | Boric acid is polymeric du 1. Its acidic nature 3. due to covant nature | | Its geometry lrogen bonds | | | 17 | When borax is heated in B | unsen burner flame with | a metal oxide 'x' on a loo | p of platinum wire a blue coloured | | | bead 'y' is formed. What | are 'x' and 'y'? | | | | | | | | 4) Cu_2O , $Cu(BO_2)_2$ | | 18 | The reaction $B_2H_6 + 2CC$ | $O \rightarrow 2BH_3$.CO is an example 2. | ample for which type of r | eaction? | | | 1) Reduction | 2) Dispropartination | 3) Cleavage | 4) Oxidation | | 19 | In the reaction $2'x' + B_2I$ | $H_6 \rightarrow [BH_2(x)_2]^+[BH_2(x)_2]$ | I_4 the amine 'x' will no | ot be :- | | | 1. NH ₃ | 2. CH ₃ CH ₂ | $3.(CH_3)$, NH | $4.(CH_3)_3N$ | | 20 | The bonds present in bor | azine are | | | | | 1) 12σ , 3π | 2) 9σ, 6π | 3) 6σ , 6π | 4) 9σ , 9π | | 21 | Borax is prepared by treat | ing colmenite with | | | | | 1. NaNO ₃ | 2.NaC1 | 3. Na ₂ CO ₃ | 4. NaHCO ₃ | | 22 | Which is false in case of l | H ₃ BO ₃ (Boric Acid)? | | | | | 1. It is soluble in hot water | | It is a tribasic aci | | | | It has a planner structure | | 4. It acts as a mono | basic acid | | 23 | Which of the following com | pounds is not matched cor | rectly with its structure? | | | | H B H B H B H | H B H - Diborate | 3. CLAI CLAI CA-Aluminiumette | arkde 4. CI — Boron trichtoride | | 24 | Diborane is instantly hydroly | - | | | | | | | (3) $H_3BO_3 + O_2$ | $(4) \ B_2O_3 + H_3BO_3$ | | 25 | The maximum number of | of atom may be present | in one plane in B ₂ H ₆ is | s: | | | (1) 5 | (2) 6 | (3) 7 | (4) 8 | | 26 | Which of following read | ction is/are incorrect | | | | | | | (2) $B_2H_6 + H_2O \to B_1$ | $H_2BO_2 + H_2$ | | | (-) = -13 : -12 = -1 | 33 | (=) = 2==0 = ==2 = == | 32.53 . 552 | | | $(3) BN + H_2O \rightarrow B_2O$ | $O_3 + NH_3$ (4) Na_2B | $A_4O_7 + H_2SO_4 + H_2O$ | $\rightarrow H_3BO_3 + Na_2SO_4$ | | | | | | | | | | | | | | 27 | Borax is prepared by tre | ating colmenite with | | | | | (1) NaNO ₃ | (2) NaCl | (3) Na ₂ CO ₃ | (4) NaHCO ₃ | | 28 | Which reactions can be | used to prepare dibora | ne | | | | I. $NaBH_4 + BF_3$ (in ether | r)→ II. NaBH ₄ | $+I_2 \rightarrow III. BF_3 + I$ | $NaH \rightarrow$ | | | (1) I,III | (2) I, I I | (3) II,III | (4) I,II and III | | 29 | $Na_2B_4O_7, 10H_2O \xrightarrow{\Delta} NaBO_2 + (A) + H_2O; (A) + MnO \xrightarrow{\Delta} (B), (A) and (B) are$ | | | | | | |----|--|--|--|--|--|--| | | (1) Na ₃ BO ₃ , Mn ₃ (1 | $BO_3)_2$ | (2) $Na_2(BO_2)_2, M$ | $ln(BO_2)_2$ | | | | | (3) B2O3, Mn(BO2) |)2 | (4) none is correct | t | | | | 30 | In reaction,BF ₃ +3L | $iBH_4 \rightarrow 3LiF + X$; here | X is: | | | | | | (1) B ₄ H ₁₀ | (2) B_2H_6 | (3) BH ₃ | $(4) B_3H_8$ | | | | 31 | Which of the follo | Which of the following compounds shows least tendency towards hydrolysis:- | | | | | | | (1) <i>BF</i> ₃ | (2) <i>BCl</i> ₃ | (3) <i>BBr</i> ₃ | (4) <i>BI</i> ₃ | | | | 32 | In the reaction; $2x$ | $+B_2H_6 \to \left[BH_2(x)_2\right]$ | $\int_{0}^{+} [BH_4]^{-}$ the amine 'x' wi | ill not be :- | | | | | (1) NH ₃ | (2) CH ₃ NH ₂ | $(3)(CH_3)_2NH$ | $(4) \left(CH_3\right)_3 N$ | | | | 33 | Which of the follo | wing have 3C – 2e box | nd: | | | | | | I. Al ₂ Cl ₆ | II. B_2H_6 | III. Fe_2Cl_6 | IV. Si_2H_6 | | | | | (1) I, I I | (2) II, IV | (3) Only II | (4) I, III, IV | | | | 34 | $B(OH)_3 + NaOH =$ | $NaBO_2 + Na[B(C)]$ | $(DH)_4$ + H_2O How can the | nis reaction is made to proceed | | | | | in forward direction | | | | | | | | (1) Addition of cis1 | 1, 2 diol
ns-1, 2 diol | | (2) Addition of Borax | | | | 35 | | | | (4) Addition of Na ₂ HPO ₄ | | | | | The state of hybrid | lization of central atom | in dimer form of both i | BH3 and BeH2 are respectively | | | | | (1) sp3, sp2 | (2) sp3, sp3 | (3) sp3, sp | (4) sp2, sp2 | | | | 36 | Hybrid state of Alu | ıminium in acidified ac | queous solution of AlCl ₃ | is | | | | | (1) sp^3 | (2) sp3d | (3) sp3d2 | (4) sp3d3 | | | | 37 | (i) Al—N ₂ → A (i | ii) Al— ^c →B Here A | & B on hydrolysis respe | ectively gives : | | | | | (1) NH ₃ , C ₂ H ₂ | (2) NO, CH ₄ | (3) NH ₃ ,CH ₄ | (4) NO, C ₂ H ₂ | | | | | | | | | | | | 38 | Aluminium chloride | e exists as dimer, Al ₂ C | l_6 in solid state as well z | as in solution of non-polar | | | | | solvent such as benz | zene. When dissolved i | in water it gives. | | | | | | (1) $Al^{+3} + 3Cl^{-}$ | | (2) $\left[Al(H_2O_6)\right]^{+3}$ + | + 3Cl ⁻ | | | | | (1) $Al^{+3} + 3Cl^{-}$
(3) $\left[Al(OH)_{6}\right]^{-3} +$ | -3 <i>HCl</i> | $(4) Al_2O_3 + 6HCl$ | | | | | | <u> </u> | | | | | | | 39 | In electrolysis of Al_2O_3 by Hall-Heroult process | | | |----|--|--|--| | | Cryolite (Na₂AlF₆) lowers the melting point of Al₂O₃ and increases its electrical
conductivity | | | | | (2) Al is obtained at cathode & O_2 at anode | | | | | (3) Graphite anode is converted into CO_2 | | | | | (4) All of these | | | | 40 | | | | | 40 | An element (A) occurs in the short period having electronic configuration ns^2np^1 . The formula of its oxide will be | | | | | 1. AO ₃ 2. AO ₂ 3. A ₂ O ₃ 4. AO | | | | | In Goldschmidt aluminothermic process, thermite contains | | | | 41 | (1) 3 parts of Al_2O_3 and 4 parts of Al (2) 3 parts of Fe_2O_3 and 2 parts of Al | | | | | (3) 3 parts Fe_2O_3 and 1 part of Al (4) 1 part Fe_2O_3 and 1 part of Al | | | | 42 | The correct statement among the following is 1) B_2O_3 is an amphoteric oxide where as Al_2O_3 is an acidic oxide | | | | | 2) 'Al' exhibits allotropy where as boron does not 3)Both boran and aluminium react with nitrogen to form nitrides which on hydrolysis give ammonia 4)Boron reacts with acids as well alkalies liberating hydrogen | | | | 43 | Standard electrode potential values, $\stackrel{\bigcirc}{E}$ for Al^{3+}/Al is -1.66V and that of TI^{3+}/TI is +1.26V What does this indicate? | | | | | 1)Al has high tendency to form $Al^{3+}(aq)$ ions $2)Tl^{3+}$ is a powerful oxidising agent. | | | | | 3) Al is more electropositive than thallium 4)All the above are true statements | | | | 44 | Ionisation enthalpy $(\Delta_t H_i k J mol^{-1})$ for the elements of group – 13 follows the order | | | | | 1)B > A1 > Ga > In > TI $2)B < A1 < Ga < In < TI$ | | | | | 3)B < Al < Ga < In < TI $4)B > Al < Ga > In < TI$ | | | | | | | | ## KEY | 1 | | |---|---| | | ANS-1 | | 2 | | | | ANS-1 | | | : (1) | | | Order of M.P $B > Al > Tl > In > Ga$ | | 3 | | | | ANS-2 | | | : (2) | | | Stability of +3 oxidation state decreases from Al to Tl. B always shows +3 oxidation state in all of its compounds. | | 4 | | | L | | | : (1) $[BF_6]^{-3}$ not exist because maximum covalency of boron is 4 | |---| | : (1)
Boron nitride $(BN)_x$ resembles with graphite in structure | | ANS-1 | | ANS-3 | | : (3)
B ₂ H ₆ has two bridged hydrogens, which cannot be substituted | | $B_3N_3H_4X_2$ shows position isomerism
1 ortho + 2 Meta + 1 para isomer = total 4 isomer. | | : (1)
Diborane (B_2H_6) has three centred two electron bond. | | : (1)
95-98% pure amorphous boron is moissan boron | | : (1)
Borax glass is a mixture of $NaBO_2 + B_2O_3$ | | $B_3N_3H_6$ is inorganic benzene | | : (3)
In B_2H_6 the hybridization of at boran $\rightarrow sp^3$ | | : (1) One $B-H-B$ having 2 electrons & two $B-H-B$ having 4 electrons | | : (1) General formula of Arachno boranes in $B_n H_{n+\delta}$ $n = \text{no.of Boran atoms}$ | | : (4) $B(OH)_3$ units are joined together by hydrogen bonds. | | : (1) $B_2O_3 + CoO \rightarrow Co(BO_2)_2 (blue) $ Cobalt meta borate | | | | 18 | | |----|--| | | : (3) | | | Cleavage reaction | | 19 | | | | : (4) | | | | | | B_2H_6 reacts with NH_3 , 1° and 2° amines & form an ionic compound. | | | However with 3° amine, B_2H_6 forms an adduct | | 20 | | | | :(1) | | | H | | | D D | | | H-N $N-H$ | | | H-N $N-H$ $H-B$ $B-H$ | | | N | | | H _ | | | Borazine | | | .: Borazine has 12σ and 3π bonds | | 21 | | | | ANS-3 | | 22 | | | | ANS-2 | | | ANS-2 | | 23 | | | | : (3) | | | Cl Al Cl AlCl ₃ (dimer) | | | Cr Cl Cl AlCi ₃ (diffier) | | 24 | | | 24 | | | | ANS-2 | | 25 | | | | | | | ANS-2 | | 06 | | | 26 | | | | ANS-3 | | | $BN + 3H_2O \rightarrow H_3BO_3 + NH_3$ | | | | | 27 | | | | ANS-3 | | 28 | | | | ANS-4 | | 20 | | | 29 | | | | ANS-3 | | 30 | | | | ANS-2 | | | | | | | | | $BF_3 + 3LiBH_4 \rightarrow 3LiF + 2B_2H_6$ | |----------|---| | 31 | | | | ANS-1 | | | Degree of Hydrolysis ∞ Covalent character order of covalent character | | | $\Rightarrow BF < BCl_3 < BBr_3 < BI_3$ | | | | | 32 | | | | ANS-4 | | | Sol: B_2H_6 reacts with NH_3 , 1° and 2° amines & form an ionic compound. | | | However with 3° amine, B_2H_6 forms an adduct | | | $B_2H_6 + 2N(CH_3)_3 \to 2(CH_3)_3 N \to BH_3$ | | 33 | | | | ANS-3 | | | H B H H | | | | | | (3c-2e ⁻ bond) | | 34 | | | | By addition of cis 1, 2 − dial the acidic nature of B(OH) ₃ increases and reaction is more | | | ANS-1 | | 35 | | | | ANS-1 | | 36 | ANS-3 | | | $AlCl_3 + 6H_2O \rightarrow \left[Al\left(H_2O\right)_6\right]^{+3} + 3Cl_{(eq)}^{-}$ $sp^3d^2 \qquad (eq)$ | | 37 | ANS-3 | | | Hint: $A = AIN \xrightarrow{H_2O} NH_3$ | | | Н-О | | | $B = Al_4C_3 \xrightarrow{H_2O} CH_4$ | | 38 | ANS-2 | | | $Al_2Cl_6 + 12H_2O \rightarrow 2 \left[Al(H_2O)_6\right]^{+3} + 6Cl_{(aa)}^{-1}$ | | | | | 39 | ANS-4
: (3) | | 40 | $A(ns^2np^1) = A^{+3} O^{+2} = A_2O_3$ | | 41 | ANS-3 | | 42 | ANS-3 | | <u> </u> | | | 43 | ANS-4 | | |-----|----------------------|--------------------------------| | 44 | ANS-3 | www | v.delightclasses.com | ANY QUERIES TEXT TO 7550201255 | Page **8** of **8**