

STOICHIOMETRY

1	The significant figur	es in 3400 are				
	(1) 2	(2) 5	(3) 6	(4) 4		
2	The number of signif	icant figures in 6.0023	are			
	(1) 5	(2) 4	(3) 3	(4) 1		
3	Given $P = 0.0030 m$, Q	= 2.40m, $R = 3000m$, Sig	gnificant figures in P,Q as	nd R are respectively		
	(1) 2, 2, 1	(2) 2, 3, 4	(3) 4, 2, 1	(4) 4, 2, 3		
4	The number of significant figures in 60.0001 is					
	(1) 5	(2) 6	(3) 3	(4) 2		
5	A sample was weight	A sample was weighted using two different balances. The result's were (i) 3.929 g (ii) 4.0 g. How				
	_	he sample be reported				
	(1) 3.929 g	(2) 3 g	(3) 3.9 g	(4) 3.93 g		
6	The number of signi	ificant figures in $N_{_{\!o}}$ –	6.022×10 ²³ (Avogadro's	number) are		
	1) Three	2) Four	3) Five	4) All		
7	Volume of a gas at S	STP is 1.12×10 ⁻⁷ cc. Cale	culate the number of mol	ecules in it		
	(1) 3.01×10 ²⁰	(2) 3.01×10 ¹²	(3) 3.01×10 ²³	(4) 3.01×10 ²⁴		
8	The number of moles of oxygen in 1 L of air containing 21% oxygen by volume, in standard					
	conditions, is					
	(1) 0.186 mol	(2) 0.21 mol	(3) 2.10 mol	(4) 0.0093 mol		
9	The equivalent weight of a metal is 9 and vapour density of its chloride is 59.25. The atomic weight					
	of metal is					
	(1) 23.9	(2) 27.3	(3) 36.3	(4) 48.3		
10	-	f a bivalent metal is 37.	2. The molecular weight	of its chloride is		
	(1) 412.2	(2) 216	(3) 145.4	(4) 108.2		
11	The number of molecules in $4.25 g$ of ammonia are					
	(1) 0.5×10^{23}	(2) 1.5×10^{23}	(3) 3.5×10^{23}	(4) 1.8 × 10 ³²		
12	Number of gm of oxy	gen in 32.2 g Na 2 SO 4 .10	0 H ₂ O i s			
	(1) 20.8	(2) 22.4	(3) 2.24	(4) 2.08		
13	19.7 kg of gold was recovered from a smuggler. How many atoms of gold were recovered ($Au = 197$)					
	(1) 100	(2) 6.02×10^{23}	(3) 6.02×10^{24}	(4) 6.02×10^{25}		
14	The empirical form	ula of a compound is	CH_2O . 0.0835 moles of the	he compound contains 1.0 g of		
	hydrogen. Molecula	r formula of the compo	ound is			
	(1) $C_2H_{12}O_6$	(2) C ₅ H ₁₀ O ₅	$(3) C_4 H_8 O_8$	(4) $C_3H_6O_3$		

15	_	ains 0.33% of iron by 00. The number of iron	_	_	_
	(1) 6	(2) 1	(3) 4	(4)	2
16	The percentage of P	os in diammonium hydr	ogen phosphate (A	VH 4)2 HPO 4 is	
	(1) 23.48	(2) 46.96	(3) 53.78	(4)	71.00
17	The percentage of Se in peroxidase anhydrous enzyme is 0.5% by weight (atomic weight=78.4). Then minimum molecular weight of peroxidase anhydrous enzyme is				
	(1) 1.568×10 ⁴	(2) 1.568 × 10 ³	(3) 15.68	(4)	3.136×10 ⁴
18	Approximate atomic weight of element w	weight of an element is ould be	s 26.89. If its equiv	valent weight i	s 8.9, the exact atomic
	(1) 26.89	(2) 8.9	(3) 17.8	(4)	26.7
19	An element with mass number 81 contains 31.7% more neutrons as compared to protons. Find the symbol				
	of the atom 1) 34 Se	2) ⁸¹ ₃₅ Br	3) $^{81}_{36}Kr$		4) 37 <i>Rb</i>
20	10 ²¹ molecules are re	emoved from 200 mg o	of CO, . The mole	s of CO, left a	are
	1) 2.88×10 ⁻³		3) 288×10		4) 28.8×10 ³
21	Choose the incorrect Acid 1) H ₃ PO ₂ 2) H ₃ PO ₄ 3) H ₃ BO ₃ 4) H ₂ SO ₄	et match regarding equiv Equivalent wt. M M/3 M/3 M/2	valent weight		
22	What will be the equ	ivalent weight of metal	if vapour density	of chloride sal	lt of trivalent metal is 81.25
	1) 18.66	2) 56	3) 162.5		4) 28
23	The equivalent weight of $CuSO_4$ when it is converted to $Cu_2I_2[M=mol.wt]$				
	1) $\frac{M}{1}$	2) $\frac{M}{2}$	3) $\frac{M}{3}$		4) 2M
24	A metal 'M' of equivalent mass E forms an Oxide of Molecular formula $M_x O_y$. The Atomic mass of the				
	metal is given by the correct equation				
	1) $2E\left(\frac{y}{x}\right)$	2) xyE	3) $\frac{E}{y}$		4) $\frac{y}{E}$
25	Non-stoichiometric compound has formula $Ni_{0.98}O_1$, Ni is present as Ni^{2+} and Ni^{3+} in this oxide. Fraction				
	of metal which will 1) 5.08%	exist as <i>Ni</i> ³⁺ would be 2) 7.01%	3) 4.08%		4) 6.05%
26	2.34 g pure sample of MgSO ₄ . 7H ₂ O is heated to evaporate all of its water content. Maximum mass loss				
	of the sample will b (l)1.8g	e :- (2)0.7 g	(3) 1.198 g	;	(4)0.36 g
27	How many moles of ferric-alum (NH ₄) ₂ SO ₄ .Fe ₂ (SO ₄) ₃ .24H ₂ O can be made from the sample of Fe containing 0.0056 g of it?				
	(1) 10 ⁻⁴ mol	(2) $0.5 \times 10^{-4} \text{mol}$	(3) 0.33 ×	10 ⁻⁴ mol	(4) 2×10^{-4} mol
28	Law of multiple pro 1) H ₂ S and SO ₂	oportions is illustrated 2) NH ₃ and NO ₂	•		eCl ₂ and FeCl ₃

29	3.0 gms of an organic compound on combustion give 8.8 gm of CO ₂ and 5.4 gm of water. The empirical formula of the compound is					
	1) CH ₃ 2) C ₂ H ₄	3) C ₂ H ₂	4) C ₂ H ₆			
30	15 cm ³ of hydrocarbon requires 45 cm ³ of oxygen for complete combustion and 30 cm ³ of CO ₂ is					
	formed. The formula of hydrod 1) C ₃ H ₆ 2) C ₂ H ₂	arbon is 3) C_4H_{10}	4) C ₂ H ₄			
31		pound containing 50 % of e	element X (at. mass 10) and 50% of element Y			
	(at. mass 20) is 1) X_2Y 2) XY_2	3) X_2Y_3	4) XY			
32	, - , -		grams of CO ₂ can be obtained according to			
	the following reaction : CaCO ₃	$(s) + 2HCl (aq) \rightarrow CaCl_2 (aq)$				
	1) 8.80 g 2) 27.4 g		4) 13.7 g			
33	The volume of SO ₂ produced weight will be	at S.T.P by the combustion	n of 50 g of sulphur containing 4 % sand by			
	1) 33.6 L 2) 22.4	L 3) 11.2 L	4) 44.8 L			
34	XL of nitrogen at N.T.P cont	ains 3.0 x 10 ²² molecules.	The number of molecules in $\frac{X}{2}L$ of ozone at			
	N.T.P will be		2			
	1) 3.0×10^{22} 2) 1.5×10^{22}					
35			quired to oxidize one mole Ferrous Oxalate in			
	acidic medium are &		0.75 4)3.5			
36			its weight. The formula of crystalline salt			
	is 1) Na ₂ SO ₄ .5H ₂ O 2) Na ₂ SO	4.7H ₂ O 3) Na ₂ SO ₄ .2H ₂ O	4) Na ₂ SO ₄ .10H ₂ O			
37			osphere and 0° C when 10 g of 100 % pure			
			cid ? (Atomic mass Ca=40, C – 12, O = 16)			
38	1) 0.224 2) 2.24 The equivalent mass of HCl in t	3) 22.4	4) 224			
30	$K_2Cr_2O_7 + 14HCl \rightarrow 2KCl + 2C$	•	necular we of fier)			
	$1)\frac{M}{1}$ $2)\frac{M}{2}$	$3)\frac{M}{\epsilon}$	4) $\frac{14M}{6}$			
	1 2	6	6			
20	Equivalent mass of H DO value	un it diamagnationata into D	H and H DO is			
39	Equivalent mass of H_3PO_2 who (M = molecular wt of H_3PO_2)	en it disproportionate into P.	H_3 and H_3PO_3 is			
	$1)M \qquad \qquad 2)M/2$	3)M/4	4) 3M/4			
40	,	,	$+AsO_4^{3-} + SO_4^{2-}$ the equivalent mass of AS_2S_3 is			
	related to its molecular mass by					
	1)M/2 2)M/4	3)M/24	,			
۰	The equivalent mass of an elements is	nent is 4.1ts chloride has a v	rapour density 59.25. Then the valency of the			
41	1)4 2)3	3)2	4)1			
42	6×10^{-3} mole $K_2 C r_2 O_7$ reacts of	6×10^{-3} mole $K_2Cr_2O_7$ reacts completely with 9×10^{-3} mole x^{n+} to give XO_3^- and Cr^{3+} . The value of				
	n is					
	1)1 2)2	3)3	4)none of these			
43	Equivalent weight of hydr 1)44 2)45		3)63 4)126			
	2)43	•	3,03 4,120			

44 What is the equivalent weight of NH_3 in the given reaction?

$$3CuO + 2NH_3 \rightarrow 3Cu + N_2 + 3H_2O$$

$$2)\frac{17}{4}$$

$$3)\frac{17}{2}$$
 $4)\frac{17}{3}$

$$4)\frac{17}{3}$$

KEY

ANS-1 1

Sol: (1) As we know that all non zero unit are significant number. Hence significant figure is 2.

2

Sol: (1) Number of significant figures in 6.0023 are 5 because all the zeroes stand between two non zero digit are counted towards significant figures.

3 ANS-2

> Sol: (2) Given P = 0.0030 m, Q = 2.40 m & R = 3000 m In P(0.0030) initial zeros after the decimal point are not significant. Therefore, significant figures in P(0.0030) are 2. Similarly in Q(2.40) significant figures are 3 as in this case final zero is significant. In R = (3000) all the zeroes are significant hence, in R significant figures are 4.

ANS-2

Sol: (2) All the zeroes between two non zero digit are significant. Hence significant figures is 6.

Sol: (4) Round off the digit at 2^{nd} position of decimal 3.929 = 3.93.

ANS-2 6

(2)

The digits between two non zero digits will be significant

ANS-2

Sol: (2): 22400cc of gas at STP has 6×10²³ molecules

$$\therefore$$
 1.12 ×10⁻⁷ of gas at STP has $\frac{6 \times 10^{23} \times 1.12 \times 10^{-7}}{22400} = .03 \times 10^{14} = 3 \times 10^{12}$.

ANS-4 8

Sol: (4) 1L of air = 210cc o_2

$$22400cc = 1 \text{ mole}$$

$$210 \ cc = \frac{1}{22400} \times 210 = 0.0093$$
.

Sol: (1) Given equivalent weight of metal = 9

Vapour density of metal chloride = 59.25

: molecular weight of metal chloride = 2 × V.D = 2 × 59.25 = 118.5

:. valency of metal = $\frac{\text{molecular weight of metal chloride}}{\text{equivalnet weight of metal} + 35.5}$

Valency of metal =
$$\frac{118.5}{9+35.5} = \frac{118.5}{44.5} = 2.66$$

Therefore atomic weight of the metal =equivalent weight \times valency = $9 \times 2.66 = 23.9$

10 ANS-3

Sol: (3) Equivalent weight of bivalent metal = 37.2

.. Atomic weight of metal = 37.2 × 2 = 74.4

.: Formula of chloride = MCI,

Hence, molecular weight of chloride

 $(MCl_2) = 74.4 + 2 \times 35.5 = 145.4$

11 ANS-2

Sol: (2) Molecular weight of NH₃ is 17

According to the mole concept

17 gm NH_3 has molecules = 6.02×10^{23}

$$\therefore 1 \text{ gm} \quad NH_3 \text{ has molecules} = \frac{6.02 \times 10^{23}}{17}$$

∴ 4.25 gm NH₃ has molecules = $\frac{6.02 \times 10^{23} \times 4.25}{12} = 1.5 \times 10^{23}$ molecule

12 ANS-2

Sol: (2)
$$Na_2SO_4$$
 . $10H_2O_4 = 2 \times 23 + 32 + 4 \times 16 + 10 \times 18 = 46 + 32 + 64 + 180 = 322gm$

$$322gm Na_2SO_4.10H_2O$$
 contains = $224 gm$ oxygen

$$32.2gm \ Na_2SO_4.10H_2O \ \text{contains} = \frac{32.2 \times 224}{322} = 22.4 \ gm$$

13 ANS-4

Sol: (4) Amount of gold =
$$19.7kg = 19.7 \times 1000gm = 19700gm$$

No. of moles =
$$\frac{19700}{197}$$
 = 100

.. No. of atoms = 100 × 6.023 × 10²³ = 6.023 × 10²⁵ atoms

14 ANS-1

Sol: (1) : 0.0835 mole of compound contains 1gm of hydrogen

:. 1gm mole of compound contain = $\frac{1}{0.0835}$ = 11.97 = 12gm of hydrogen.

12 gm of H_2 is present in $C_2H_{12}O_6$

$$\therefore$$
 67200gm Hb = $\frac{67200 \times 0.33}{100}$ gm Fe

$$gm \text{ atom of } Fe = \frac{672 \times 0.33}{56} = 4$$
.

16 ANS-3

Sol: (3)
$$2(NH_4)_2HPO_4 \equiv P_2O_5$$

 $2(36+1+31+64)=264$ $62+80=142$

% of
$$P_2O_5 = \frac{\text{wt. of } P_2O_5}{\text{wt of salt}} \times 100 = \frac{142}{264} \times 100 = 53.78\%$$
.

17 ANS-1

$$78.4gm Se \rightarrow \frac{100 \times 78.4}{0.5} = 1.568 \times 10^{4}$$

Minimum m.w. → molecule at least contain one selenium.

18 ANS-4

Sol: (4) Atomic weight = Equivalent weight × Valency =
$$8.9 \times 3 = 26.7$$
 (Valency = $\frac{26.89}{8.9} \approx 3$).

19 ANS-2

: Mass number of the element =
$$81 i.e.$$
, $p + n = 81$

Let the number of protons be Z.

Number of neutrons =
$$Z + \frac{31.7}{100} \times Z$$

mass number (81)= Z+ Z +
$$\frac{31.7}{100} \times Z$$
 Z = $\frac{81}{2.317}$ = 34.9

Symbol of the element =
$$\frac{81}{35}Br$$

20 ANS-1

: (1)

21 ANS-3

:
$$Valency = \frac{2 \times vapour\ density}{E + 35.5}$$

$$H_2SO_4 \Rightarrow \frac{2 \times 81.25}{E + 35.5} \Rightarrow 3E + 106.5 = 162.5$$

3E=56

E=18.66

24 ANS-1

: (1)

: Let atomic mass of metal M is 'a'

Mass of metal = $a \times x$

Mass of Oxygen = $16 \times y$

Equivalent mass of element = $\frac{\text{Mass of element}}{\text{Mass of oxygen}} \times 8$

$$E = \frac{ax}{16y} \times 8 \qquad a = 2E \frac{y}{x}$$

$$a = 2E \frac{y}{x}$$

ANS-3 25

: (3)

: Given Compound is $^{Ni_{0.98}O_1}$

Number of Ni^{+3} ions= x

Number of Ni^{+2} ions = 0.98-x

Number of O^{-2} ions = 1

$$(+3)x + (-2)(0.98 - x) + (-2)1 = 0$$

$$x+1.96-2=0$$

$$x = 0.04$$

$$Ni^{+3} = \frac{0.04}{0.98} \times 100 = 4.08\%$$

ANS-3 26

: $MgSO_4$. $7H_2O(s) * MgSO_4(s) + 7H_2O(l)$

246 g MgSO₄. 7H₂O gives = 126 g H₂O

2.34 g MgSO₄. 7H₂O gives = 1.26 g H₂O

: Moles of Fe =
$$\frac{0.0056}{56}$$
 = 10^{-4} mol

$$10^{-4} \text{ mol Fe } \frac{1}{2} \times 10^{-4} \text{ mol}$$

$$= 0.5 \times 10^{-4} \text{ mol}$$

28 ANS-4

In FeCl₂ and FeCl₃, the ratio of weights of Cl that combine with fixed weight of Fe is 2:3

29

W % of C =
$$\frac{12}{44}$$
x $\frac{8.8}{3}$ x100 = 80%

W% of H =
$$\frac{2}{18} \times \frac{5.4}{3} \times 100 = 20\%$$

80 % of C & 20% of H gives the EF as CH₃

30

$$C_xH_y + (x + \frac{y}{4})O_2 \rightarrow XCO_2 + \frac{y}{2}H_2O$$

$$30 \, \mathrm{mL}$$

$$1 \text{ mL}$$
 3 mL

$$2 \, \mathrm{mL}$$

$$\therefore x = 2; x + \frac{y}{4} = 3 \Rightarrow \frac{y}{4} = 1; y = 4$$

∴ Hydrocarbon is C₂H₄

31 ANS-1

$$\Rightarrow \frac{50}{10} = 5; \frac{50}{20} = 2.5$$

$$\Rightarrow \frac{5}{2.5} = 2; \frac{2.5}{2.5} = 1$$

$$\therefore$$
 EF = X_2Y

32 ANS-1

100 g of CaCO₃
$$\rightarrow$$
 44g of CO₂

20 g of CacO₃
$$\rightarrow$$
 ? = 8.8 g

$$96 \% \text{ of } 50 \text{ g} = 48 \text{ g}$$

32 g of S
$$\rightarrow$$
 22.4 L of SO₂

$$48 \text{ g} \rightarrow ? = 33.6 \text{ L}$$

34 ANS-2

According to Avagardro's Law

$$\frac{V_1}{n_1} = \frac{V_2}{n_2}$$

$$\frac{X}{3x10^{22}} = \frac{X}{2xn_2} \therefore n_2 = 1.5 \times 10^{22}$$

35 ANS-1

$$3KMnO_4 + 5FeC_2O_4$$

 $3moles$ 5 moles
? 1 mole

$$3K_2Cr_2O_4 + 6FeC_2O_4$$

3moles 6 moles
? 1 mole

36 ANS-4

44.1 g of salt
$$\rightarrow$$
 55.9 g of H₂O

142 g of salt
$$\rightarrow$$
?

= $180 \text{ g} \Rightarrow 10 \text{ moles of water}$

37 ANS-2

$$CaCO_3 \rightarrow CaO + CO_2$$

$$100 \text{ g} \rightarrow 22.4 \text{ L}$$

$$10 \text{ g} \rightarrow ? = 2.24 \text{ L}$$

38 ANS-4

14 mole HCl loses 6 mole e^- ;

∴ 1 mole HCl loses
$$\frac{6}{14}$$
 mole e^-

$$\therefore$$
 eq. Mass of $HCl = \frac{M}{\left(\frac{6}{14}\right)}$

$$\Rightarrow \frac{36.5 \times 14}{6} = 85.1$$

39 ANS-4

n- factor =
$$\frac{n_1 \times n_2}{n_1 + n_2} = \frac{4 \times 2}{4 + 2} = \frac{4}{3}$$

Eq. Mass =
$$\frac{mol \, mass}{n - factor} = \frac{M \times 3}{4}$$

n- factor =
$$|2 \times 2 + 8 \times 3| \Rightarrow 28$$

ANS-2

41

$$Eq.mass ext{ of chloride} = E_{Element} + E_{Chlorine}$$

$$\frac{M_{Mass}}{n_f} = E_{Element} + E_{Chlorine}$$

$$\frac{59.25 \times 2}{x} = 4 + 35.5$$

$$x = 3$$

42 ANS-1

$$K_2Cr_2O + X^{n+} \to X^{5+}O_3^- + Cr^{3+}$$

 $6 \times 10^{-3} \times 6 = (5-n) \times 9 \times 10^{-3} \implies n = 1$

43 ANS-3

$$C_2H_2O_4.2H_2O$$

44 ANS-4

$$2N^{3-} \rightarrow (N_2)^0 + 6e^-$$
2 mole of $NH_3 = 1mole N_2$
Thus equivalents
 $2 \times n = 1 \times 6$
 $n = 6 / 2 = 3$
∴ Eq. wt = $\frac{M}{3} = \frac{17}{3}$