

	bond energy is more in 1) C_2H_2 3) C_2H_6 umber of ionic, covale 1) 1,3 and 1	 2) C₂H₄ 4) same in all 		
2 The n	3) $C_2 H_6$ umber of ionic, covale	4) same in all		
2 The n	3) $C_2 H_6$ umber of ionic, covale	4) same in all		
2 The n		ent and coordinate bo		
			onds in NH_4Cl are re	spectively
		2) 1,3 and 2	3) 1,2 and 3	
3 The b	onds present in N_2O_5	(g) are		
	 1) only ionic 2) covalent and coord 3) only covalent 4) covalent and ioni 	rdinate		
4 Which	h pair of molecules w	ill have permanent di	pole moment for both	n members
	1) NO_2 and O_3		-	
	3) SiF ₄ and NO ₂			
5 A dia	tomic molecule has di electronic charge ex		D. If the bond distance	e is 1 A^0 what percentage of
	1) 12%of e		3) 25% of e	4) 29% of e
6 The o	rder of increasing dip	ole moment in HCl, O	CO ₂ and HF molecule	es is
	1) HCl, HF, CO_2	$2) HF, HCl, CO_2$		
	3) <i>CO</i> ₂ , <i>HCl</i> , <i>HF</i>	4) <i>CO</i> ₂ , <i>HF</i> , <i>HCl</i>		
7 Whic	h bond angle 'θ' would	l result in the maximu	um dipole moment fo	r the tri atomic molecule YXY
	1) $\theta = 90^{\circ}$		3) $\theta = 150^{\circ}$	4) $\theta = 180^{\circ}$
8 The d	ipole moment of HBr character of HBr is 1) 7	is 1.6x10 ⁻³⁰ Cm and 2) 10	inter atomic spacing	is 1A ⁰ unit, the percent ionic
	3) 15	4) 27		
9 The c	orrect sequence of dip 1) $CHCl_3 < CH_2Cl_2$	•	the chlorides of meth 2) $CH_2Cl_2 > CH_2$	
	 3) CH₃Cl > CH₂Cl₂ 4) CH₂Cl₂ > CHCl₃ 	5		
10 The s	hape of SF_4 is			
	1) See saw	2) Tetra hedral		
www.delightc	3) Trigonal	4) Linear		7550201255

11	Molecular shapes of SF_4 , CF_4 & XeF_4 are
	1) the same with 2,0 and 1 lone pair of
	electrons
	2) the same with 1,0 and 1 lone pair of
	electrons 3) different with 0,1 and 2 lone pair of electrons
	4) different with 1,0 and 2 lone pair of electrons
12	Which one of the following molecules is planar
	1) NF_3 2) NCl_3
	3) PH_3 4) BF_3
13	In which of the following process, the bond order has increased and the magnetic behavior has
10	changed
	1) $N_2 \rightarrow N_2^+$ 2) $C_2 \rightarrow C_2^+$
	1) $N_2 \rightarrow N_2^+$ 2) $C_2 \rightarrow C_2^+$ 3) $NO \rightarrow NO^+$ 4) $O_2 \rightarrow O_2^+$
14	Which of the following is paramagnetic
	1) O_2^- 2) CN ⁻
	$\begin{array}{c} 1 & 2 \\ 3 \end{array} \begin{array}{c} 2 \\ 3 \end{array} \begin{array}{c} 2 \\ 4 \end{array} \begin{array}{c} 2 \\ 3 \end{array} \begin{array}{c} 2 \\ 4 \end{array} \begin{array}{c} 3 \\ 0 \\ 0 \end{array}$
15	How would N-N bond distance and O-O bond distance changes when N ₂ changes to N_2^+ and O ₂
	changes of O_2^+
	1) increase, decrease
	2) decrease, increase
	3) increases, in both the cases
	4) decreases in both the cases
16	The number of anti bonding electron pairs in O_2^{2-} molecular ion on the basis of molecular orbital
	theory is
	1) 4 2) 3 3) 2 4) 5
17	The correct order of increasing C-O bond length of CO, CO_3^{2-} , CO_2 is
	1) $CO_3^{2-} < CO_2 < CO_2$
	2) $CO_3 < CO_3^{2-} < CO$
	3) $CO < CO_3^{2-} < CO_2$
	4) $CO < CO_2 < CO_3^{2-}$
18	The common features among the species CN ⁻ , CO and NO ⁺ are
10	1) bond order three and isoelectronic
	2) bond order two and isoelectronic
	3) bond order two and isosters
	4) isoelectronic and isobars
19	Statement (S-I) : The double bond in C ₂ molecule consists of both π bonds
	Statement (S-II) : Four electrons are present in two π bonding molecular orbitals in C ₂
	1. Both S-I & S-II are true
<u>WWW.</u>	<u>delightclasses.com</u> 7550201255 Page 2 of 25

	2. S-I is true but S-II is false
	3. S-I is false but S-II is true
	4. Both S-I & S-II are false
20	Which one of the following species is diamagnetic in nature $U = \frac{1}{2} U$
	1) He_2^+ 2) H_2^-
	3) H_2^+ 4) H_2^- Sol: H ₂ is diamagnetic
	Sol: H_2 is diamagnetic
21	Stability of the species $Li_2, Li_2^ Li_2^+$ increases in the order of
	1) $Li_2 < Li_2^+ < Li_2^-$ 2) $Li_2^- < Li_2^+ < Li_2$
	3) $Li_2 < Li_2^- < Li_2^+$ 4) $Li_2^- < Li_2 < Li_2^+$
22	H_2O has higher boiling point than H_2S because
	 H₂S is a smaller molecule and hence more closely packed the bond angle of H₂O is more than H₂S and hence H₂O molecule are more tightly packed
	3) The intermolecular hydrogen bonding in liquid H_2O
	4) The latent heat of vaporization is higher for H_2O than for H_2S
23	The correct order of O-O bond length in O_2, H_2O_2 and O_3 is
	1) $O_2 > O_3 > H_2O_2$ 2) $O_3 > H_2O_2 > O_2$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$3) H_2 O_2 > O_3 > O_2 + O_2 > H_2 O_2 > O_3$
24	Which has the least bond angle
	1) NH_3 2) BeF_2
	3) H_2O 4) CH_4
05	The maximum number of hydrogen hands formed by a water melecula in ice is
25	The maximum number of hydrogen bonds formed by a water molecule in ice is 1) 4 2) 3 3) 2 4) 1
26	Deale amont in C. SO. 511 O in
20	Bonds present in $CuSO_4.5H_2O$ is 1) Electrovalent and covalent
	2) Electrovalent and coordinate
	3) Electrovalent, covalent and coordinate
	4) Covalent and coordinate
27	Which of the following Lewis structure does not contribute in resonance
	$O \qquad O^+ \qquad O \qquad O^-$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	1)1 2)111 3)11 4)1V
	delightclasses.com 7550201255 Page 3 of 25
<u>vv vv vv</u> .0	

	In which of the following pair, both 1) BeH ₂ , BeF ₂	compounds are ionic 2) LiCl, LiH	in nature? 3) AlF ₃ , CaC ₂	4) MgCl ₂ , CCl ₄
29	Solid NaCl is a bad conductor of ele 1) in solid NaCl there are no 3) in solid NaCl there is no n	ions	2) solid NaCl is co4) in solid NaCl th	ovalent here are no electrons
30	An ionic compound A ⁺ B ⁻ is most lil 1) the ionization energy of A 2) the ionisation energy of A 3) both, the ionization energ 4) both, the ionization energ	A high and electron aff A is low and electron at y of A and electron aff	inity of B is low ffinity of B is high finity of B are high	
31	Which of the following statements a 1) LiCl has lower melting po 2) LiCl dissolves more in or 3) LiCl dissolves more in wa 4) Fused LiCl would be less	oint than NaCl ganic solvents whereas ater than NaCl	s NaCl does not	
32	Which of the following order is inco 1) Ionic character = MCl < N 3) Polarising power = Na ⁺ < < LiI	$MCl_2 < MCl_3$ 2) polarizibility = F^{-} 4) Covalent characte	$< Cl^- < Br^- < I^-$ er = LiF < LiCl < LiB
33	Which of the following will be mos	t covalent?		
	1) NaCl	2) Na ₂ S	3) MgCl ₂	4) MgS
34	Which of the following statement is 1) Minimum polarisation is 2) A large cation is likely to 3) Maximum polarisation is 4) Distortion of cation by an	brought about by a cat bring about a large de brought about by a cat	gree of polarisation ion of high charge	
34 35	 Minimum polarisation is A large cation is likely to Maximum polarisation is 	brought about by a cat bring about a large de brought about by a cat	gree of polarisation ion of high charge on	4) $ns^2np^6nd^{10}$
	 Minimum polarisation is A large cation is likely to Maximum polarisation is Distortion of cation by an Pseudo inert gas configuration is:	brought about by a cat bring about a large de brought about by a cat ion is called polarisati 2) $(n-1)d^{10}ns^2np^6$ ble of super octet moleo 2) PCl ₅	gree of polarisation tion of high charge on 3) $ns^2np^6nd^{1-9}$	4) $ns^2np^6nd^{10}$ 4) All the three
35	 1) Minimum polarisation is 2) A large cation is likely to 3) Maximum polarisation is 4) Distortion of cation by an Pseudo inert gas configuration is: 1) ns²np⁶ Which of the following is an examp 1) ClF₃ Sol: Expanded octet is super octed If the z – axis is taken as the intern 	brought about by a cat bring about a large de brought about by a cat ion is called polarisati 2) $(n-1)d^{10}ns^2np^6$ ele of super octet moleo 2) PCl ₅ et uclear axis, then which	gree of polarisation cion of high charge on 3) $ns^2np^6nd^{1-9}$ cule? 3) IF ₇	4) All the three
35 36	 1) Minimum polarisation is 2) A large cation is likely to 3) Maximum polarisation is 4) Distortion of cation by an Pseudo inert gas configuration is: 1) ns²np⁶ Which of the following is an examp 1) CIF₃ Sol: Expanded octet is super octed 	brought about by a cat bring about a large de brought about by a cat ion is called polarisati 2) $(n-1)d^{10}ns^2np^6$ ele of super octet moleo 2) PCl ₅ et uclear axis, then which	gree of polarisation cion of high charge on 3) $ns^2np^6nd^{1-9}$ cule? 3) IF ₇	4) All the three
35 36	 1) Minimum polarisation is 2) A large cation is likely to 3) Maximum polarisation is 4) Distortion of cation by an Pseudo inert gas configuration is: 1) ns²np⁶ Which of the following is an examp 1) ClF₃ Sol: Expanded octet is super octed If the z – axis is taken as the intern orbitals is a nonbonding comparison of the second second	brought about by a cat bring about a large de brought about by a cat ion is called polarisati 2) $(n-1)d^{10}ns^2np^6$ ele of super octet moleo 2) PCl ₅ et uclear axis, then which abination? 2) P _x and p _z	gree of polarisation tion of high charge on 3) $ns^2np^6nd^{1-9}$ cule? 3) IF ₇ h of the following c	4) All the three ombinations of atomi
35 36 37	 1) Minimum polarisation is 2) A large cation is likely to 3) Maximum polarisation is 4) Distortion of cation by an Pseudo inert gas configuration is: 1) ns²np⁶ Which of the following is an examp 1) ClF₃ Sol: Expanded octet is super octed If the z – axis is taken as the intern orbitals is a nonbonding con 1) s and px 	brought about by a cat bring about a large de brought about by a cat ion is called polarisati 2) $(n-1)d^{10}ns^2np^6$ ele of super octet moleo 2) PCl ₅ et uclear axis, then which abination? 2) P _x and p _z - deficient? 2) PH ₃	gree of polarisation ion of high charge on 3) $ns^2np^6nd^{1-9}$ cule? 3) IF ₇ h of the following c 3) P _x and p _y 3) (CH ₃) ₂	4) All the threeombinations of atomi4) all of these

	1) $3d_{x^2-y^2}$	he hybridization in the P(2) $3d_z^2$	3) $3d_{xy}$	4) $4d_{z^2}$
42	The $C - H$ bond and $C - C$			owing types of overlap?
		sp^2 2) $sp-s$ and sp^2		
	3) $p-s$ and $p-p$	4) $sp^3 - s$ and $sp^3 - s$	$sp^3 - sp^3$	
43	The type of hybridization o $1) \text{ sp}^2$	f nitrogen atom in NH ₃ is 2) sp ³	$3) dsp^2$	(1) cm
	1) sp	2) sp	5) usp	4) sp
44	Which of the following spe	cies does not obey octet	rule?	
	1) SiF4	2) PCl ₅	3) ICl	4) CO_3^{-2}
45	In PO_4^{-3} ion, the average for		en atom is.	
	1) +1	2) -0.75	3) -1	4) +0.75
46	The formula of an ionic con		per of valence electron	s in A and B respectively
	1) 2, 3	2) 3, 2		
	3) 5, 6	4) 2, 6		
47	How many sigma and pi bo	onds are present in toluen	e?	
		2) 12σ and 3π bonds		
	3) 15σ and 3π bonds			
48	Lattice energy of NaCl is	X'. If the ionic size of	A^{+2} is equal to that	of Na ⁺ and B ⁻² is
		attice energy associated		
	1) X 2) 4X		•	
40	Identify AB_E_ type of m	olecules among the follow	wing (Where E is no c	of lonenairs)
49	Identify AB_2E_2 type of m	steedles among the follow		n ionepans)
49		$I = H_2O$		n ionepans)
49	$I = SO_2$	$I = H_2O$		n ionepuns)
49	$I = SO_2 \qquad I$ $III = OF_2 \qquad I$	$H = H_2O$ W = HClO ₃		n ionepuns)
49	$I = SO_2$	$H = H_2O$ W = HClO ₃		n ionepuns)
	$I = SO_2$ $III = OF_2$ $I) I, II only$ $3) I, III, IV$	II = H ₂ O IV = HClO ₃ 2) II, III only 4) I, II, III		
	$I = SO_{2}$ $III = OF_{2}$ $I) I, II only$ $3) I, III, IV$ The geometry and hybridisa	II = H ₂ O IV = HClO ₃ 2) II, III only 4) I, II, III		
	I = SO ₂ III = OF ₂ 1) I, II only 3) I, III, IV The geometry and hybridist 1) See-saw, sp ³ d	$H = H_2O$ $IV = HClO_3$ 2) II, III only 4) I, II, III ation of Xe in XeOF ₄ is		
	I = SO ₂ III = OF ₂ 1) I, II only 3) I, III, IV The geometry and hybridist 1) See-saw, sp ³ d 2) Square Pyrami	$H = H_2O$ $IV = HClO_3$ 2) II, III only 4) I, II, III ation of Xe in XeOF ₄ is		
	I = SO ₂ III = OF ₂ 1) I, II only 3) I, III, IV The geometry and hybridist 1) See-saw, sp ³ d 2) Square Pyrami 3) Planar, sp ³ d	$H = H_2O$ $IV = HClO_3$ 2) II, III only 4) I, II, III ation of Xe in XeOF ₄ is		
	I = SO ₂ III = OF ₂ 1) I, II only 3) I, III, IV The geometry and hybridist 1) See-saw, sp ³ d 2) Square Pyrami	$H = H_2O$ $IV = HClO_3$ 2) II, III only 4) I, II, III ation of Xe in XeOF ₄ is		
50	I = SO ₂ III = OF ₂ 1) I, II only 3) I, III, IV The geometry and hybridist 1) See-saw, sp ³ d 2) Square Pyrami 3) Planar, sp ³ d	$H = H_2O$ $V = HClO_3$ 2) II, III only 4) I, II, III ation of Xe in XeOF ₄ is dal, sp ³ d ²	itrite and nitrat	
50	I = SO ₂ III = OF ₂ I) I, II only 3) I, III, IV The geometry and hybridist 1) See-saw, sp ³ d 2) Square Pyrami 3) Planar, sp ³ d 4) T-shaped, sp ³ d	$H = H_2O$ $V = HClO_3$ 2) II, III only 4) I, II, III ation of Xe in XeOF ₄ is dal, sp ³ d ² f nitrogen in n		
49 50 51	I = SO ₂ III = OF ₂ I) I, II only 3) I, III, IV The geometry and hybridist 1) See-saw, sp ³ d 2) Square Pyrami 3) Planar, sp ³ d 4) T-shaped, sp ³ d	$H = H_2O$ $V = HClO_3$ 2) II, III only 4) I, II, III ation of Xe in XeOF ₄ is dal, sp ³ d ² f nitrogen in n		

52	A molecule MX ₃ has zero dipole moment. The % of 's' character in the hybridized orbitals of M is 1) 25% 2) 33.3% 3) 50% 4) 75%
53	When N ₂ goes to N ₂ ⁺ , the N-N bond distance and when O ₂ goes to O ₂ ⁺ , the O-O
	bond distance
	1) Increases, Decreases
	2) Decreases, increases
	3) Increases, Increases
	4) Decreases, Decreases
54	Some statements are given below with respect to
	ОН ОН
	NO ₂
	A B
	I) 'B' is more soluble in water than 'A'.
	II) Boiling point of 'A' is higher than that of 'B'.
	III) 'A' is more volatile than 'B'.
	IV) 'A' contains inter molecular hydrogen bond and B contains intra molecular hydrogen bond.
	The correct statements are
	1) I, III 2) I, II 3) II, IV 4)II, III
55	Bond order of $O_2, O_2^+, O_2^-, O_2^{-2}$ is in order
	1) $O_2^- < O_2^{-2} < O_2 < O_2^+$ 2) $O_2^{-2} < O_2^- < O_2 < O_2^+$
	3) $O_2^+ < O_2 < O_2^- < O_2^{-2}$ 4) $O_2 < O_2^+ < O_2^{-2} < O_2^{-2}$
	$3 \mathcal{O}_2 < \mathcal{O}_2$
56	Which of the following is wrong
	1) ortho nitrophenol is more volatile then para nitro phenol
	2) Density of Ice is less than that of water
	3) Hydrogen bond is stronger than covalent bond
	4) $CuSO_45H_2O$ crystals contain hydrogen bond
57	Which of the following statement(s) is/are true ?
•••	i) In N ₂ , the doubly degenerate π_{2p} orbitals are completely filled.
	L L
	ii) In O ₂ , the energy of σ_{2p_z} orbital is lower than the doubly degenerate π_{2p} orbitals .
	iii) Different molecular species with the same configuration have the same energy.
	iv) A π^*_{2p} orbital has two nodal planes.
	1) i, ii and iv 2) i and ii only 3) i, ii, iii and iv 4) ii, iii, iv
58	Which of the following species is paramagnetic ?
	1) N ₂ 2) B ₂ 3) O_2^{2-} 4) C ₂
	delightclasses.com 7550201255 Page 6 of 25

	behavior has char	•	$2) \cap \mathcal{A}^+$	Λ λT λT^+
	$1 C_2 \rightarrow C_2$	2) $NO^+ \rightarrow NO$	$3J O_2 \rightarrow O_2$	4) $N_2 \rightarrow N_2$
50	Bond order of which of t	he following is equal t	o that of O ₂	
	1) CO	2) NO	3) C ₂	4) CN ⁻
51		tive charged hydroge	e	ydrogen bond with partial
		oxygen of H_2O when		
	2) Boiling point of than H_2O	of H_2O is greater that	n HF though hydrog	gen bond in H – F is strong
	3) Inter molecula	r hydrogen bonding ir soluble in water due	_	ce its boiling Point hydrogen bonds with wat
52	Which of the following o			
	a) $2 p_y + 2 p_y \rightarrow$ c) $2 p_x + 2 p_x \rightarrow$		b) 2 p_z + 2 $p_z \rightarrow$ d) 1 s + 2 $p_y \rightarrow$	—
		2 p _x 2) 'b' & 'd'		
53	Which of the following s			
	1) Among O_2^+ , 0	O_2 and O_2^- the bon	d length decreases a	as $O_2^- > O_2^- > O_2^+$
	2) <i>He</i> ₂ molecule other	does not exist as the	bonding and anti –	bonding orbitals cancel ead
	3) C_2, O_2^{2-} and	Li_2 are diamagnetic		
		lle, the energy of σ_{2p_2}	is more than π_{2p_2}	$_{x}$ and $\pi_{2p_{y}}$
64	If we consider no mixing the diatomic mole		als, then the bond o	order and magnetic nature
	 3 and diamage 2 and diamage 		2) 2.5 and diama4) 2 and parama	0
65	Which of the following s 1) H_2O is mor	tatements is correct? e volatile than H_2S .		
	3) Para Nitro pho	re viscous than ethyl a enol is steam volatile b ıble in water due to hi	out ortho nitro phen	ol is not steam volatile nt of water
66	Stability of the species L 1) $Li_2^- < Li_2^+ < Li_2$	i ₂ , Li ⁻ ₂ and Li ⁺ ₂ increas 2) $Li_2 < Li_2^1 < Li_2^+$	Set in the order of: 3) $Li_2^- < Li_2 < Li_2^-$	4) $Li_2 < Li_2^+ < Li_2^-$

67	In which of the following	doos the overlap of	f two orbitals give a non bo	nding
	interaction ?	ubes the overlap 0	i two of bitals give a fioli Do	nunig
	+ - ()+		(-+)+	
	1.		2.	
			$\left(+ \right)$	
		\geq	$(+ \times)$	
	3 +	+×-)	4.	
68	The molecules which con	tain both covalent	and coordinate covalent bo	onds are:
	a) <i>CO</i>	b) NH ₃ BF ₃	c) BF_{4}^{-}	d) $H_3 O^+$
	1) a, b, c	2) b, c, d	3) a, b, c, d	4) a, c, d
69	According to Molecular o of Bond order ?	rbital theory ,Whic	h of the following represen	t the increasing order
	1) $N_2^{2-} < N_2^- < N$	2	2) $N_2 < N_2^{2-} < N_2^{-}$	
	3) $N_2^- < N_2^{2-} < N_2^{2-}$	2	4) $N_2^- < N_2 < N_2^{2-}$	
70	In the conversion of N	₂ into N ₂ ⁺ the ele	ctron will be lost from v	which of the following
	molecular orbitals	;?		
	1) $\sigma_{2P_{Z}}^{*}$	2)_ σ _{2Pz}	3) π _{2Px}	4) $\pi^{*}_{2P_{X}}$
71	The bond orders in BN, B	Ĩ	5	-
	1) 2, 3, $\frac{5}{2}$	2) 2, $\frac{5}{2}$, 2	3) 2, $\frac{5}{2}$, 3	4) $\frac{5}{2}$, 2, 3
	_	-	_	-
72	Which is a pair of param	agnetic species ?		
	1) KO ₂ , NO ₂	2) K ₂ O ₂ , KO ₂	3) K ₂ O, NO ₂	4) NO ₂ , N ₂ O ₂
73	Which of the following l	eads to the format	ion of bonding molecular	orbital?
	s-orbital p-orbital		s-orbital p-orbita	
	1)			
	p-orbital p-orbital		p-orbital d-orbita	1
	$3) \xrightarrow{\bigcirc} \oplus \oplus$		4) +	
74	In an antihanding male	ulan arbital alactu	on donaitu ia minimum	
/ 4	In an antibonding molect 1) Around one at	cular orbital, electronic com of the molecul		
	2) Between the tw	vo nuclei of the mo	olecule	
	3) At the region a	away from the nuc	lei of the molecule	
	leliahtclasses.com	75502	040FF	Page 8 of 25

 75 Which have odd bond order - 0, 5 1) 4 10 1, 1, 1, 1, 10 1, 10 		4) All are correct		
 76 Number of anti-bonding electrons in N₂ is - 1) 4 2) 10 3) 12 4) 14 77 N₂ and O₂ are converted to monocations N₂ and O₂ respectively, which is wror statement- 1) In N₂, the N-N bond weakens 2) In O₂, the O - O bond order increases 3) In O₂, the O - O bond order increases 3) In O₂, the Paramagnetism decreases 4) N₅ becomes diamagnetic 78 Glycerol is a thick viscous liquid because of 1) High molar mass 2) It is an organic molecule 3) It has intermolecular hydrogen bonding 4) It has intermolecular hydrogen bonding 79 Which is steam volatile - 0 - nitrophenol 2) Aniline 3) Clycerol 4) P-nitrophenol 80 In which molecule is the Vander Waals force is likely to be most important in determinimm, p. and b.p.(other than molecular weight) 1) H₂O Br₂ NH₃ Alcohol 81 Off CHO Incorrect statement about given compound is has intermolecular H-bonding is steam-volatile Cho Incorrect statement about given compound is has intermolecular H-bonding is steam-volatile Controphenol is more volatile than para-nitrophenol due to - 1) intramolecular H-bonding in o-nitrophenol and intermolecular H-bonding in j nitrophenol 	75	Which have odd bond order -		
1) 42) 103) 124) 1477N2 and O2 are converted to monocations N1 and O1 respectively, which is wrow statement- 1) In N2, the N-N bond weakens 2) In O2, the O - O bond order increases 3) In O1, the O - O bond order increases 3) In O1, the paramagnetism decreases 4) N2 becomes diamagnetic78Clycerol is a thick viscous liquid because of 1) High molar mass 2) It is an organic molecule 3) It has intermolecular hydrogen bonding 4) It has intermolecular hydrogen bonding 4) It has intermolecular hydrogen bonding79Which is steam volatile - 1) o -nitrophenol2) Aniline 3) Clycerol 4) p-nitrophenol80In which molecule is the Vander Waals force is likely to be most important in determining m.p. and b.p.(other than molecular weight) 1) H2O 2) Br23) NH381OH CHO Incorrect statement about given compound is 1) has intra molecular H-bonding 3) is steam-volatile 4) Can be purified by steam distillation82Among the following the strongest hydrogen bond is 1) O-H S 2) S-HO 3) F-HF4) O-H 4) O-H83O-nitrophenol is more volatile than para-nitrophenol and intermolecular H-bonding in o-nitrophenol and intramolecular H-bonding in juntrophenol 2) intermolecular H-bonding in o-nitrophenol and intramolecular H-bonding in juntrophenol		1) O_2^+ 2) O_2^-	3) NO	4) All
 77 N₂ and O₂ are converted to monocations N; and O₂ respectively, which is wror statement- In N₂, the N-N bond weakens In O₂, the O - O bond order increases In O₂, the O - O bond order increases In O₂, the paramagnetism decreases N² becomes diamagnetic 78 Glycerol is a thick viscous liquid because of High molar mass It is an organic molecule It has intermolecular hydrogen bonding It has intermolecular hydrogen bonding It has intermolecular hydrogen bonding 79 Which is steam volatile - o -nitrophenol Annine 80 In which molecule is the Vander Waals force is likely to be most important in determining m.p. and b.p.(other than molecular weight) H₂O Br₂ NH₃ 81 O^H CHO Incorrect statement about given compound is has intermolecular H-bonding is steam-volatile Can be purified by steam distillation 82 Among the following the strongest hydrogen bond is O-HS O-HS S-HF O-nitrophenol is more volatile than para-nitrophenol and intermolecular H-bonding in o-nitrophenol and intramolecular H-bonding in j. 	76	Number of anti-bonding electrons in N ₂ is -		
statement- 1) In N ₂ ¹ , the N-N bond weakens 2) In O ₂ ¹ , the O - O bond order increases 3) In O ₂ ¹ , the O - O bond order increases 3) In O ₂ ¹ , the paramagnetism decreases 4) N ₂ ¹ becomes diamagnetic 78 Clycerol is a thick viscous liquid because of 1) High molar mass 2) It is an organic molecule 3) It has intermolecular hydrogen bonding 4) It has intramolecular hydrogen bonding 79 Which is steam volatile - 1) o -nitrophenol 2) Aniline 3) Glycerol 4) It was intramolecular was force is likely to be most important in determining m.p. and b.p.(other than molecular weight) 1) H ₂ O 2) Br ₂ 3) NH ₃ 4)Alcohol 81 OH CHO Incorrect statement about given compound is 1) has intermolecular H-bonding 3) is steam-volatile 4) Can be purified by steam distillation 82 Among the following the strongest hydrogen bond is 1) O-HS 2) S-HO 3) F-HF 4) O-H 83 O-nitrophenol is more volatile than		1) 4 2) 10	3) 12	4) 14
 1) In N[±], the N-N bond weakens 2) In O[±], the O - O bond order increases 3) In O[±], the Paramagnetism decreases 4) N[±] becomes diamagnetic 78 Clycerol is a thick viscous liquid because of High molar mass It is an organic molecule JI has intermolecular hydrogen bonding 4) It has intramolecular hydrogen bonding 4) It has intramolecular hydrogen bonding 79 Which is steam volatile - o -nitrophenol Anniper and b.p. (other than molecular weight) H₂O Br₂ NH₃ Al/Alcohol 81 O^H CHO Incorrect statement about given compound is has intermolecular H-bonding is steam-volatile Can be purified by steam distillation 82 Among the following the strongest hydrogen bond is O-nitrophenol is more volatile than para-nitrophenol due to - intramolecular H-bonding in o-nitrophenol and intermolecular H-bonding in finitrophenol 	77		and O_2^+ respect	ively, which is wrong
 2) In o[±], the O - O bond order increases 3) In o[±], the paramagnetism decreases 4) N[±] becomes diamagnetic 78 Glycerol is a thick viscous liquid because of 1) High molar mass 2) It is an organic molecule 3) It has intermolecular hydrogen bonding 4) It has intermolecular hydrogen bonding 4) It has intermolecular hydrogen bonding 79 Which is steam volatile - 1) o -nitrophenol 2) Aniline 3) Glycerol 4) p-nitrophenol 80 In which molecule is the Vander Waals force is likely to be most important in determinin m.p. and b.p.(other than molecular weight) 1) H₂O 2) Br_{2 3}) NH_{3 4})Alcohol 81 81 O^H CHO Incorrect statement about given compound is 1) has intermolecular H-bonding 3) is steam-volatile 4) Can be purified by steam distillation 82 Among the following the strongest hydrogen bond is 1) O-HS 2) S-HO 3) F-HF 4) O-H 83 O-nitrophenol is more volatile than para-nitrophenol and intermolecular H-bonding in o-nitrophenol and intermolecular H-bonding in introphenol 2) intermolecular H-bonding in o-nitrophenol and intermolecular H-bonding in p-nitrophenol 2) intermolecular H-bonding in o-nitrophenol and intermolecular H-bonding in p-nitrophenol 2) intermolecular H-bonding in o-nitrophenol and intermolecular H-bonding in p-nitrophenol 2) intermolecular H-bonding in o-nitrophenol and intermolecular H-bonding in p-nitrophenol 2) intermolecular H-bonding in o-nitrophenol and intermolecular H-bonding in p-nitrophenol 2) intermolecular H-bonding in o-nitrophenol and intermolecular H-bonding in p-nitrophenol 3) intermolecular H-bonding in o-nitrophenol and intermolecular H-bonding in p-nitrophenol 3) intermolecular H-bonding in o-nitrophenol and intermolecular H-bonding in p-nitrophenol 3) intermolecular H-bonding in o-nitrophenol and intermolecular H-bonding in p-nitrophenol 3) intermolecular H-bonding in p-nitrophenol and intermolecular H-b				
 3) In O¹₂, the paramagnetism decreases 4) N[*]₂ becomes diamagnetic 78 Glycerol is a thick viscous liquid because of High molar mass It is an organic molecule JI thas intermolecular hydrogen bonding H has intramolecular hydrogen bonding 79 Which is steam volatile - o -nitrophenol Aniline Glycerol o -nitrophenol Aniline 80 In which molecule is the Vander Waals force is likely to be most important in determinin m.p. and b.p.(other than molecular weight) H₂O Br₂ NH₃ 81 O^H CHO Incorrect statement about given compound is has intermolecular H-bonding is steam-volatile Can be purified by steam distillation 82 Among the following the strongest hydrogen bond is O-nitrophenol is more volatile than para-nitrophenol due to - intramolecular H-bonding in o-nitrophenol and intermolecular H-bonding in no-nitrophenol and intermolecular H-bonding in para-nitrophenol and intermolecular H-bonding in para-nitropheno				
 4) N[±] becomes diamagnetic 78 Glycerol is a thick viscous liquid because of High molar mass It is an organic molecule JIt has intermolecular hydrogen bonding 4) It has intermolecular hydrogen bonding 79 Which is steam volatile - o -nitrophenol Aniline Glycerol o -nitrophenol 80 In which molecule is the Vander Waals force is likely to be most important in determinin m.p. and b.p.(other than molecular weight) H₂O Br₂ NH₃ 81 O^H CHO Incorrect statement about given compound is has intermolecular H-bonding has intermolecular H-bonding is steam-volatile Can be purified by steam distillation 82 Among the following the strongest hydrogen bond is O-nitrophenol is more volatile than para-nitrophenol due to - intramolecular H-bonding in o-nitrophenol and intermolecular H-bonding in nitrophenol 				
 78 Glycerol is a thick viscous liquid because of High molar mass It is an organic molecule It as intermolecular hydrogen bonding It has intramolecular hydrogen bonding 79 Which is steam volatile - o -nitrophenol 80 In which molecule is the Vander Waals force is likely to be most important in determinin m.p. and b.p.(other than molecular weight) H₂O Br₂ NH₃ 81 O^H CHO Incorrect statement about given compound is has intermolecular H-bonding is steam-volatile Can be purified by steam distillation 82 Among the following the strongest hydrogen bond is O-nitrophenol is more volatile than para-nitrophenol due to - intramolecular H-bonding in o-nitrophenol due to - intramolecular H-bonding in o-nitrophenol and intramolecular H-bonding in para 				
 1) High molar mass 1) High molar mass 2) It is an organic molecule 3) It has intermolecular hydrogen bonding 4) It has intramolecular hydrogen bonding 79 Which is steam volatile - 1) o -nitrophenol 2) Aniline 3) Clycerol 4) p-nitrophenol 80 In which molecule is the Vander Waals force is likely to be most important in determinin m.p. and b.p.(other than molecular weight) 1) H₂O 2) Br₂ 3) NH₃ 4) Alcohol 81 H CHO Incorrect statement about given compound is has intermolecular H-bonding is steam-volatile Can be purified by steam distillation 82 Among the following the strongest hydrogen bond is 0-HS 2) S-HO F-HF 0-nitrophenol is more volatile than para-nitrophenol due to - intramolecular H-bonding in o-nitrophenol and intermolecular H-bonding in para-nitrophenol 		4) N_2^+ becomes diamagnetic		
 2) It is an organic molecule 3) It has intermolecular hydrogen bonding 4) It has intramolecular hydrogen bonding 79 Which is steam volatile - o -nitrophenol Aniline 80 In which molecule is the Vander Waals force is likely to be most important in determininm.p. and b.p.(other than molecular weight) 1) H₂O 2) Br₂ 3) NH₃ 4) Alcohol 81 Off CHO Incorrect statement about given compound is 1) has intermolecular H-bonding 2) has intra molecular H-bonding 3) is steam-volatile 4) Can be purified by steam distillation 82 Among the following the strongest hydrogen bond is 1) O-HS 2) S-HO 3) F-HF 4) O-H 83 O-nitrophenol is more volatile than para-nitrophenol due to - 1) intramolecular H-bonding in o-nitrophenol and intermolecular H-bonding in further of the providence of the provide	78	Glycerol is a thick viscous liquid because of		
 3) It has intermolecular hydrogen bonding 4) It has intramolecular hydrogen bonding 79 Which is steam volatile - o -nitrophenol Aniline 80 In which molecule is the Vander Waals force is likely to be most important in determining m.p. and b.p.(other than molecular weight) http://doc.org/10.000 81 CHO Incorrect statement about given compound is has intermolecular H-bonding has intermolecular H-bonding is steam-volatile Can be purified by steam distillation 82 Among the following the strongest hydrogen bond is O-nitrophenol is more volatile than para-nitrophenol due to - intramolecular H-bonding in o-nitrophenol and intermolecular H-bonding in pritrophenol 		1) High molar mass		
 4) It has intramolecular hydrogen bonding 79 Which is steam volatile - i) o -nitrophenol 2) Aniline 3) Glycerol 4) p-nitrophenol 80 In which molecule is the Vander Waals force is likely to be most important in determining m.p. and b.p. (other than molecular weight) H₂O Br₂ NH₃ 81 O^H CHO Incorrect statement about given compound is has intramolecular H-bonding has intra molecular H-bonding is steam-volatile Can be purified by steam distillation 82 Among the following the strongest hydrogen bond is O-HS S-HS S-HF O-nitrophenol is more volatile than para-nitrophenol due to - intramolecular H-bonding in o-nitrophenol and intramolecular H-bonding in pointrophenol 		2) It is an organic molecule		
 79 Which is steam volatile - <u>1</u>) o -nitrophenol 2) Aniline 3) Glycerol 4)p-nitrophenol 80 In which molecule is the Vander Waals force is likely to be most important in determining m.p. and b.p. (other than molecular weight) 1) H₂O <u>2</u>] Br₂ 3) NH₃ 4)Alcohol 81 O^H CHO Incorrect statement about given compound is 1) has intermolecular H-bonding 2) has intra molecular H-bonding 3) is steam-volatile 4) Can be purified by steam distillation 82 Among the following the strongest hydrogen bond is 1) O-H S 2) S-HO 3) F-HF 4) O-H 83 O-nitrophenol is more volatile than para-nitrophenol due to - 1) intramolecular H-bonding in o-nitrophenol and intermolecular H-bonding in <u>1</u> 		3)_It has intermolecular hydrogen bonding		
 1) o -nitrophenol 2) Aniline 3) Glycerol 4)p-nitrophenol 80 In which molecule is the Vander Waals force is likely to be most important in determining m.p. and b.p.(other than molecular weight) 1) H₂O 2) Br₂ 3) NH₃ 4)Alcohol 81 6 6 81 6 CHO Incorrect statement about given compound is 1) has intermolecular H-bonding 2) has intra molecular H-bonding 3) is steam-volatile 4) Can be purified by steam distillation 82 82 Among the following the strongest hydrogen bond is 1) O-HS 2) S-HO 3) F-HF 4) O-H 83 60-nitrophenol is more volatile than para-nitrophenol due to - 1) intramolecular H-bonding in o-nitrophenol and intermolecular H-bonding in para-nitrophenol and intermolecular H-bonding in para-nitrophenol 2) intermolecular H-bonding in o-nitrophenol and intramolecular H-bonding in para-nitrophenol 		4) It has intramolecular hydrogen bonding		
 80 In which molecule is the Vander Waals force is likely to be most important in determining m.p. and b.p.(other than molecular weight) H₂O Br₂ NH₃ 81 H^{CHO} Incorrect statement about given compound is has intermolecular H-bonding has intra molecular H-bonding is steam-volatile Can be purified by steam distillation 82 Among the following the strongest hydrogen bond is O-nitrophenol is more volatile than para-nitrophenol due to - intramolecular H-bonding in o-nitrophenol and intermolecular H-bonding in printrophenol intermolecular H-bonding in o-nitrophenol and intramolecular H-bonding in point of the strongest hydrogen bond is intermolecular H-bonding in point of the strongest hydrogen bond is intermolecular H-bonding in point of the strongest hydrogen bond is intermolecular H-bonding in point of the strongest hydrogen bond is intermolecular H-bonding in point of the strongest hydrogen bond is intermolecular H-bonding in point of the strongest hydrogen bond is intermolecular H-bonding in point of the strongest hydrogen bond is intermolecular H-bonding in point of the strongest hydrogen bond is intermolecular H-bonding in point of the strongest hydrogen bond is intermolecular H-bonding in point of the strongest hydrogen bond is intermolecular H-bonding in point of the strongest hydrogen bond is intermolecular H-bonding in point of the strongest hydrogen bond is intermolecular H-bonding in point of the strongest hydrogen bond is intermolecular H-bonding in point of the strongest hydrogen bond is intermolecular H-bonding in point of the strongest hydrogen bond is intermolecular H-bonding in point of the strongest hydrogen bond is intermolecular H-bonding in point of the strongest hydrogen bond is intermolecular H-bonding in point of the strongest hydrogen bond is intermolecular H-bonding in point of the strongest hydrogen bond is intermolecular H-bonding in po	79	Which is steam volatile -		
 m.p. and b.p.(other than molecular weight) H₂O Br₂ NH₃ Alcohol 81 H₂O Br₂ NH₃ Alcohol 82 Among the following the strongest hydrogen bond is O-H S S - H O F - H F O - H S S - H O F - H F O - H S S - H O F - H F O - H S S - H O F - H F O - H O F - H F O - H O F - H F O		<u>1)</u> o -nitrophenol 2) Aniline	3) Glycerol	4)p-nitrophenol
 1) H₂O 2) Br₂ 3) NH₃ 4)Alcohol 81 O^H CHO Incorrect statement about given compound is 1) has intermolecular H-bonding 2) has intra molecular H-bonding 3) is steam-volatile 4) Can be purified by steam distillation 82 Among the following the strongest hydrogen bond is 0-H S S-H O F-H F 4) O-H 83 O-nitrophenol is more volatile than para-nitrophenol due to - 1) intramolecular H-bonding in o-nitrophenol and intermolecular H-bonding in para-nitrophenol and intermolecular H-b	80	In which molecule is the Vander Waals force is like	ely to be most in	nportant in determining
 81 OH CHO Incorrect statement about given compound is has intermolecular H-bonding has intra molecular H-bonding is steam-volatile Can be purified by steam distillation 82 Among the following the strongest hydrogen bond is O-H S S-H O F-H F O-nitrophenol is more volatile than para-nitrophenol due to - intramolecular H-bonding in o-nitrophenol and intermolecular H-bonding in paralitophenol intermolecular H-bonding in o-nitrophenol and intermolecular H-bonding in paralitophenol 				
 B2 Among the following the strongest hydrogen bond is O-H S S-H O F-H F O-nitrophenol is more volatile than para-nitrophenol due to -		1) H_2O <u>2)</u> Br_2	3) NH ₃	4)Alcohol
 Incorrect statement about given compound is has intermolecular H-bonding has intra molecular H-bonding is steam-volatile Can be purified by steam distillation 82 Among the following the strongest hydrogen bond is O-HS S-HO F-HF O-nitrophenol is more volatile than para-nitrophenol due to - intramolecular H-bonding in o-nitrophenol and intermolecular H-bonding in parameters intermolecular H-bonding in o-nitrophenol and intramolecular H-bonding in parameters 	81	ОН І СНО		
 2) has intra molecular H-bonding is steam-volatile Can be purified by steam distillation 82 Among the following the strongest hydrogen bond is 0-H S S-H O F-H F O-nitrophenol is more volatile than para-nitrophenol due to - intramolecular H-bonding in o-nitrophenol and intermolecular H-bonding in pitrophenol 2) intermolecular H-bonding in o-nitrophenol and intramolecular H-bonding in pitrophenol 		Incorrect statement about given compour	nd is	
 3) is steam-volatile 4) Can be purified by steam distillation 82 Among the following the strongest hydrogen bond is 0-H S S-H O F-H F O-nitrophenol is more volatile than para-nitrophenol due to - intramolecular H-bonding in o-nitrophenol and intermolecular H-bonding in para-nitrophenol intermolecular H-bonding in o-nitrophenol and intramolecular H-bonding in para-nitrophenol 		1) has intermolecular H-bonding		
 4) Can be purified by steam distillation 82 Among the following the strongest hydrogen bond is 0-H S S-H O F-H F O-nitrophenol is more volatile than para-nitrophenol due to - intramolecular H-bonding in o-nitrophenol and intermolecular H-bonding in parameters intermolecular H-bonding in o-nitrophenol and intramolecular H-bonding in parameters 		2) has intra molecular H-bonding		
 82 Among the following the strongest hydrogen bond is O-H S S-H O F-H F O-h S 83 O-nitrophenol is more volatile than para-nitrophenol due to - intramolecular H-bonding in o-nitrophenol and intermolecular H-bonding in para-nitrophenol intermolecular H-bonding in o-nitrophenol and intramolecular H-bonding in para-nitrophenol 		3) is steam-volatile		
1) O-HS 2) S-HO 3) F-HF 4) O-H 83 O-nitrophenol is more volatile than para-nitrophenol due to - 1) intramolecular H-bonding in o-nitrophenol and intermolecular H-bonding in para-nitrophenol and intermolecular H-bonding in para-nitrophenol and intramolecular H-bonding in para-nitrophenol		4) Can be purified by steam distillation		
 1) O-HS 2) S-HO 3) F-HF 4) O-H 83 O-nitrophenol is more volatile than para-nitrophenol due to - intramolecular H-bonding in o-nitrophenol and intermolecular H-bonding in para-nitrophenol intermolecular H-bonding in o-nitrophenol and intramolecular H-bonding in para-nitrophenol intermolecular H-bonding in o-nitrophenol and intramolecular H-bonding in para-nitrophenol 	82	Among the following the strongest hydrogen bond	l is	
 intramolecular H-bonding in o-nitrophenol and intermolecular H-bonding in p nitrophenol intermolecular H-bonding in o-nitrophenol and intramolecular H-bonding in p 				4) O-HC
nitrophenol 2) intermolecular H-bonding in o-nitrophenol and intramolecular H-bonding in j	83	O-nitrophenol is more volatile than para-nitrophenol	nol due to –	
nitrophenol 2) intermolecular H-bonding in o-nitrophenol and intramolecular H-bonding in j		1) intramolecular H-bonding in o-nitrophe	nol and intermo	lecular H-bonding in p
2) intermolecular H-bonding in o-nitrophenol and intramolecular H-bonding in				0 1
		-	nol and intramo	lecular H-bonding in p
		delight classes com 7550201255		Page Q of 2

	 3) more stronger intramolecular H-bonding in o-nitrophenol a nitrophenol 4) more stronger intermolecular H-bonding in o-nitrophenol a 	
	nitrophenol	
84	Which of the following compounds is most volatile ?	
	1) HF 2) HCl 3) HBr	4) HI
85	In which case hydrogen bond will not be observed -	
	1) H ₃ O ₂ - 2) H ₂ O 3) HF	4) AsH ₃
86	A simple example of a coordinate covalent bond is exhibited by :1) HCl2) NH33) C2H2	4) H ₂ SO ₄
87	Which of the following has dative bond?1) NO_3^- 2) N23) CO_2	4) C ₂ H ₄
88	Which is correct order with respect to bond order?1. $N_2^+ > N_2$ 2. $O_2^+ > O_2$ 3. $O_2^- > O_2$	4. $O_2^+ > N_2^+$
89	How many electrons are present in the anti bonding orbitals in O_2 molection1) 22) 43) 8	cule? 4) 6
90	The no of dative bonds in HCN molecule is/are1) 32) 13) 4	4) 2
91	 Which of the following is a correct statement? 1) In a diatomic molecule energy of σ2p_z molecular orbital is hig π and π2p_y molecular orbitals. 2) In a diatomic molecule energy of σ2p_z molecular orbital is low π2p_x and π2p_y molecular orbitals. 3) In a diatomic molecule energy of σ2p_z molecular orbital is equ π2p_x and π2p_y molecular orbitals. 4) Data is insufficient. 	ver than that of
92	 C₂ molecule consists of a double bond with both <i>π</i> bonds, since 1) The molecule contains 2 electrons in two pi molecular orbitals. 2) The molecule contains 4 electrons in two pi molecular orbitals. 3) The molecule contains 2 electrons in the sigma molecular orbita 4) The molecule contains 2 electrons in two pi and 2 electrons in s orbitals. 	
93	Isoelectronic species have same	
<u>www.a</u> 25	delightclasses.com 7550201255	Page 10 of

	1) Ionic charges 2) Bond	order	3) Energies	4) Stabilities
94	Which of the following has more	e bond length	?	
	1) C≡ C 2) N≡N	3) H	I-H	4) C≡N
95	According to valence bond theor	w the bond	s in methane are fo	rmed due to the over
50	lapping	y, the bolic	is in methane are re	fined due to the over
	1) $1\sigma s - p, 3\sigma s - s$ 2) $1\sigma s$	$s-s, 3\sigma s-p$		
	3) $3\sigma s - s, 1\sigma s - p$ 4) 4σ	$-sp^3-s$		
95	The bond energy (in kcal mol ⁻¹)	of a C - C	single bond is ap	proximately
	1) 1 2) 10 3) 100 4) 100	00		
	3) 100 4) 100)0		
97	The correct order of double bond	l character	in X - O bond is g	given by
	(x= central atom of the ic	on)		
	1) $ClO_4^{-} < SO_4^{2-} < PO_4^{3-} < SiO_4^{4-}$			
	2) $ClO_4^{-}>SO_4^{2-}>PO_4^{3-}>SiO_4^{4-}$			
	3) $PO_4^{3-}>SO_4^{2-}SiO_4^{4-}$			
	4) $SiO_4^{4-} < PO_4^{3-} > SO_4^{2-} > ClO_4^{-}$			
98	In allene (C_3H_4) , the type(s) of		on of the carbon atc	oms is (are)
	1) $sp \& sp^3$ 2) on 2			
	3) $sp^2 \& sp^3$ 4) sp^2	² & <i>sp</i>		
99	A diatomic molecule has a dipol	e moment of	1.2D. If the bond	distance is 1.0Å. The
	fraction of an electronic cl			
	1) 10% 2) 20%			
	3) 25% 4) 50°	%		
100	In HCHO, there are X non-bond	ing electron	pairs, Y σ -bonds	s and Z π – bonds, X, Y
	and Z are	0	1	
	1) 1, 1, 3 2) 2, 3			
	3) 1, 2, 3 4) not	ne of these		
101	In Lewis formula of O_3 , there are			
	1) 2σ , 1π , 4 lone pairs			
	2) 1σ , 2π , 1 lone pairs			
	3) 2σ , 2π , 3 lone pairs			
	4) 2σ , 1π , 6 lone pairs			
102	The values of electron and inites	fatoma ^	and Para 1 0 and 1	10 roopactivaly The
	The values of electronegativity o percentage ionic character		and Date 1.0 and	4.0 respectively. The
	1) 90 2) 75.			
	3) 50.0 4) 79.			
	<u>delightclasses.com</u>	75502012	55	Page 11 of
25				

	The correct order of lattic	0	following ionic compounds is
	1) NaCl>MgCl ₂ >C	20	
	2) NaCl>CaO>Mg(2 2 3	
	3) $Al_2O_3 > MgCl_2 > O_3$		
	4) Al ₂ O ₃ >CaO>Mg	gCl ₂ >NaCl	
104	A molecule which posses	sses both sp^3 and	$sp^{3}d^{2}$ hybridization is
	1) $PCl_{5(g)}$	2) $PCl_{5(s)}$	
	1) $PCl_{5(g)}$ 3) $PCl_{5(l)}$	4) none of these	
105	Which of the following c	ompounds has a 3 c	entre bond?
	1) <i>BF</i> ₃	2) <i>NH</i> ₃	
	3) $B_2 H_6$	4) <i>CO</i> ₂	
106	Which of the following c	onversions involve	change in both hybridization and shape?
	$1) CH_4 \rightarrow C_2 H_6$	2) $NH_3 \rightarrow NH_4^+$	
	3) $BF_3 \rightarrow BF_4^-$	4) $H_2 O \rightarrow H_3 O^+$	
107	The melting point of RbE	Br is $682^{\circ}C$ while	that of NaF is $988^{\circ}C$. The principal reason
	for this fact is		
	,	of NaF is less than the	
	2) the bond in RbI	Br has more covalent	character than in NaF
	2) the bond in RbH 3) the difference in	Br has more covalent n the electronegativit	
	2) the bond in RbB 3) the difference in difference betwee	3r has more covalent n the electronegativit n Na and F	character than in NaF
	 2) the bond in RbB 3) the difference in difference between 4) the lattice energy 	3r has more covalent n the electronegativit n Na and F	character than in NaF ty between Rb and Br is smaller than the n the lattice energy of NaF because the
108	 2) the bond in RbB 3) the difference in difference between 4) the lattice energy 	Br has more covalent in the electronegativit in Na and F gy of RbBr is less that ince $(r_c + r_a)$ is greater	character than in NaF ty between Rb and Br is smaller than the n the lattice energy of NaF because the
108	 2) the bond in RbF 3) the difference in difference betwees 4) the lattice energy internuclear distant Molecular shapes of <i>SF</i>₄, 1) the same with 1 	Br has more covalent in the electronegativit in Na and F gy of RbBr is less that ince $(r_c + r_a)$ is greater CF_4 and XeF_4 are CF_4 and 1 lone pair of	character than in NaF ty between Rb and Br is smaller than the n the lattice energy of NaF because the for RbBr than for NaF electrons respectively on the central atom
108	 2) the bond in RbF 3) the difference in difference betwees 4) the lattice energy internuclear distant Molecular shapes of <i>SF</i>4, 1) the same with 1 2) the same with 1 	Br has more covalent in the electronegativit in Na and F gy of RbBr is less that nce $(r_c + r_a)$ is greater $\overline{CF_4}$ and XeF_4 are .,1 and 1 lone pair of .,0 and 2 lone pairs o	character than in NaF ty between Rb and Br is smaller than the n the lattice energy of NaF because the for RbBr than for NaF electrons respectively on the central atom f electrons respectively on the central atom
108	 2) the bond in RbF 3) the difference in difference betwees 4) the lattice energy internuclear distant Molecular shapes of <i>SF</i>₄, 1) the same with 1 2) the same with 1 3) different with 0 	Br has more covalent in the electronegativity in Na and F gy of RbBr is less that nce $(r_c + r_a)$ is greater CF_4 and XeF_4 are CF_4 and 1 lone pair of CF_4 and 2 lone pairs of T_4 and 2 lone pairs of	character than in NaF ty between Rb and Br is smaller than the n the lattice energy of NaF because the for RbBr than for NaF electrons respectively on the central atom f electrons respectively on the central atom f electrons respectively on the central atom
	 2) the bond in RbF 3) the difference in difference betwees 4) the lattice energy internuclear distant Molecular shapes of <i>SF</i>₄, 1) the same with 1 2) the same with 1 3) different with 0 	Br has more covalent in the electronegativit in Na and F gy of RbBr is less that nce $(r_c + r_a)$ is greater $\overline{CF_4}$ and XeF_4 are .,1 and 1 lone pair of .,0 and 2 lone pairs o	character than in NaF ty between Rb and Br is smaller than the n the lattice energy of NaF because the for RbBr than for NaF electrons respectively on the central atom f electrons respectively on the central atom f electrons respectively on the central atom f electrons respectively on the central atom
108	 2) the bond in RbF 3) the difference in difference betwees 4) the lattice energy internuclear distant Molecular shapes of <i>SF</i>₄, 1) the same with 1 2) the same with 1 3) different with 0 	Br has more covalent in the electronegativit in Na and F gy of RbBr is less that ince $(r_c + r_a)$ is greater CF_4 and XeF_4 are CF_4 and 1 lone pair of CF_4 and 2 lone pairs of CF_4 and 2 lone pairs of CF_4 and 2 lone pairs of C	character than in NaF ty between Rb and Br is smaller than the n the lattice energy of NaF because the for RbBr than for NaF electrons respectively on the central atom f electrons respectively on the central atom f electrons respectively on the central atom
	2) the bond in RbF 3) the difference in difference betwees 4) the lattice energy internuclear distant Molecular shapes of SF_4 , 1) the same with 1 2) the same with 1 3) different with 0 4) different with 1 The hybridization of orbit 1) sp, sp^2, sp^3	Br has more covalent in the electronegativit in Na and F gy of RbBr is less that nce $(r_c + r_a)$ is greater $\overline{CF_4}$ and XeF_4 are 1 and 1 lone pair of 0 and 2 lone pairs of 0 and 0 an	character than in NaF ty between Rb and Br is smaller than the n the lattice energy of NaF because the for RbBr than for NaF electrons respectively on the central atom f electrons respectively on the central atom f electrons respectively on the central atom f electrons respectively on the central atom
	2) the bond in RbF 3) the difference in difference betwees 4) the lattice energy internuclear distant Molecular shapes of SF_4 , 1) the same with 1 2) the same with 1 3) different with 0 4) different with 1 The hybridization of orba	Br has more covalent in the electronegativit in Na and F gy of RbBr is less that nce $(r_c + r_a)$ is greater $\overline{CF_4}$ and XeF_4 are 1 and 1 lone pair of 0 and 2 lone pairs of 0 and 0 an	character than in NaF ty between Rb and Br is smaller than the n the lattice energy of NaF because the for RbBr than for NaF electrons respectively on the central atom f electrons respectively on the central atom f electrons respectively on the central atom f electrons respectively on the central atom
109	2) the bond in RbH 3) the difference in difference betwees 4) the lattice energy internuclear distant Molecular shapes of SF_4 , 1) the same with 1 2) the same with 1 3) different with 0 4) different with 1 The hybridization of orbit 1) sp, sp^2, sp^3 3) sp^3, sp, sp^2 Pentagonal bipyramidal	Br has more covalent in the electronegativity in Na and F gy of RbBr is less that ince $(r_c + r_a)$ is greater CF_4 and XeF_4 are AREAR AREAR AREAR AREAR AREAR $AREAR AREAR AREAR AREAR AREARAREAR AREAR AREAR AREAR AREARAREAR AREAR AREAR AREAR AREAR AREAR AREARAREAR AREAR AREAR AREAR AREAR AREAR AREAR AREARAREAR AREAR AREAR AREAR AREAR AREAR AREAR AREAR AREAR AREAR AREARAREAR AREAR AREARAREAR AREAR AREAR$	character than in NaF ty between Rb and Br is smaller than the n the lattice energy of NaF because the for RbBr than for NaF electrons respectively on the central atom f electrons respectively on the central atom f electrons respectively on the central atom f electrons respectively on the central atom
	2) the bond in RbH 3) the difference in difference betwees 4) the lattice energy internuclear distant Molecular shapes of SF_{44} 1) the same with 1 2) the same with 1 3) different with 0 4) different with 1 The hybridization of orbit 1) sp, sp^2, sp^3 3) sp^3, sp, sp^2 Pentagonal bipyramidal 1) $120^0, 90^0, 180^0$	Br has more covalent in the electronegativity in Na and F gy of RbBr is less that ince $(r_c + r_a)$ is greater CF_4 and XeF_4 are Are Are Are Are Are Are Are Are Are Are	character than in NaF ty between Rb and Br is smaller than the n the lattice energy of NaF because the for RbBr than for NaF electrons respectively on the central atom f electrons respectively on the central atom NO_3^- , NO_2^+ and NO_2^- are respectively
109	2) the bond in RbH 3) the difference in difference betwees 4) the lattice energy internuclear distant Molecular shapes of SF_{44} 1) the same with 1 2) the same with 1 3) different with 0 4) different with 1 The hybridization of orbit 1) sp, sp^2, sp^3 3) sp^3, sp, sp^2 Pentagonal bipyramidal 1) $120^0, 90^0, 180^0$	Br has more covalent in the electronegativity in Na and F gy of RbBr is less that ince $(r_c + r_a)$ is greater CF_4 and XeF_4 are AREAR AREAR AREAR AREAR AREAR $AREAR AREAR AREAR AREAR AREARAREAR AREAR AREAR AREAR AREARAREAR AREAR AREAR AREAR AREAR AREAR AREARAREAR AREAR AREAR AREAR AREAR AREAR AREAR AREARAREAR AREAR AREAR AREAR AREAR AREAR AREAR AREAR AREAR AREAR AREARAREAR AREAR AREARAREAR AREAR AREAR$	character than in NaF ty between Rb and Br is smaller than the n the lattice energy of NaF because the for RbBr than for NaF electrons respectively on the central atom f electrons respectively on the central atom NO_3^- , NO_2^+ and NO_2^- are respectively

111	How many resonating forms can be writtenfor CO_2 an1) 3, 22) 3, 33) 2, 34) 3, 4	d chlorate ions respectively?	
112	For which of the following molecules have significant I) $\begin{array}{c c c c }Cl & CN \\ I & OH \\ II & O$	$(\mu \neq 0)$ dipole moment	
113	The type of hybridisation on the five carbon atoms from left to ri $CH_3 - CH = C = CH - CH_3$ are:1) sp ³ , sp ² , sp ² , sp ² , sp ³ 2) sp3) sp ³ , sp ² , sp, sp ² , sp ³ 4) sp	ight in the molecule. p ³ , sp, sp ² , sp ² , sp ³ p ³ , sp ² , sp ² , sp, sp ³	
114	Which among the following molecule contains Intra1) O-Nitro phenol2) P-Nitro phenol3) HF4) Both 1 and 2	nol	
115	1 ² c p 3 1 1 1 1 1 1		
	d SP hybridisation is present in,	$(CO(NH_3)_6]^{+3} \qquad 4) \ PCl_5$	
116	In which of the following processes, the bond order has increase changed to diamagnetic? 1) $O_2 \rightarrow O_2^+$ 2) $O_2 \rightarrow O_2^{2-}$ 3) $N_2 \rightarrow N_2^+$		
117	Among the following massing the diamognetic male	enles is	
	Among the following species, the diamagnetic molected 1) B_2 2) NO 3) O_2		
118	During the change of O_2 to O_2^- , the incoming electron	on goes to the orbital	
	1) $\sigma^* 2pz$ 2) $\pi 2py$ 3) π^*		
<u>www.d</u> 25	www.delightclasses.com 7550201255 Page 13 of		

119	Identify the pair in which the geometry of	of the species is T shape and square pyramidal respectively.
119	1) IO_3^- and $IO_2F_2^-$	 2) XeOF₂ and XeOF₄
	3) ICl_2^- and ICl_5	4) ClF_3 and IO_4^-
120	Which of the following conversions	involves change in both shape and hybridization?
		C_3O^+ 3) $CH_4 \rightarrow C_2H_6$ 4) $NH_3 \rightarrow NH_4^+$
		5 4 2 6 7 5 4
121	The intermolecular interaction that is	s dependent on the inverse cube of distance between the
	molecules is	
	1) London force	2) Hydrogen bond
	3) Ion-ion interaction	4) Ion-dipole interaction
122	In allene (C_3H_4) , the type(s) of hy	vbridization of the carbon atoms is(are)
	1) sp and sp ³ 2) sp and sp	p^2 3) Only sp^2 4) sp^2 and sp^3
123	Cation to anion radius ratio is mo	
	1) CsI 2) CsF	3) <i>LiBr</i> 4) NaF
124	Which of the following combination a	gives strongest ionic bond
	1) $Na^+and Cl^-$ 2) $Mg^{2+}and Cl^-$	
105		
125	The bond angles of NH_3 , NH_4^+ ,	NH_2^- are in the order
	1) $NH_2^- > NH_3 > NH_4^+$	2) $NH_4^+ > NH_3 > NH_2^-$
	3) $NH_3 > NH_2^- > NH_4^+$	4) $NH_3 > NH_4^+ > NH_2^-$
126	Select in which both have sea-sa	w shape?
	1) XeO ₂ F ₂ ,SiF ₄	2) XeO_2F_2 , SF_4
	3) TeCl_4 , ICl_4^-	4) $TeCl_4$, $XeOF_2$
	4 4	.,
127	Isostructural species are those which has species identify the isostructural pairs.	ave the same shape and hybridisation. Among the given
	1) $\left[NF_3 \text{ and } BF_3 \right]$	2) $\begin{bmatrix} BF_4^- \text{ and } NH_4^+ \end{bmatrix}$
	3) $[BCl_3 \text{ and } BrCl_3]$	4) $\left[\text{NH}_3 \text{ and } \text{NO}_3^{-} \right]$
128		
120	Select incorrect statement	
	 Molecular orbital is polycentric Bonding molecular orbitals are: 	more stable than anti bonding molecular orbitals
	3) Bond order in N_2 is 3	more share that and contains more than oronars
	4) According to M.O.T. C_2 contain	ns one 'sigma' and one 'ni' bond
	a) recording to M.O.T. C ₂ contain	is one signia and one proond
L	1	

129	In which of the	following the hydration	n energy is higher than the	e lattice energy
	1) <i>BaSO</i> ₄	2) <i>MgSO</i> ₄	3) <i>RaSO</i> ₄	4) $SrSO_4$
130	d ² SP ³ hybridisat	ion is present in,		
	1) SF ₆	2) BrF ₅	3) [<i>CO</i> (<i>NH</i> ₃	$_{6}]^{+3}$ 4) PCl_{5}
		KE	Y	
1	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	S>SP ³ -S : C-H bond energy	/ order	
		5/51 -5 . C-11 bond energy	order	
2	ANS-1 Sol: NH_4Cl cor	tain 1 ioninc, 3 covalent, 1	dative bonds	
3	ANS-2			
		ns covalent and dative bond	ls	
4	ANS-1			
	Sol: NO_2 and O_3	molecules will have perma	nent dipole moment	
5	ANS-3 Sol: μ = charge	x bond length		
	$1.2 \times 10^{-18} =$	charge x 10 ⁻⁸		
	Charge = 1.	$2x10^{-10} = 1/4^{\text{th}} \text{ of electron c}^{-10}$	harge	
6	ANS-3 Sol: CO_2 , HCl , I	HF H O		
	0, 1.07, 1.78			
7	ANS-1			
	Sol: $\mu = 2xbmxc$ If θ is mini	$\cos \theta/2$ mum μ is more		
0				
8		racter = μ observed / μ calc	ulated x 100	
	$\frac{1.6 \times 10^{-19}}{1.6 \times 10^{-19}}$	$\frac{30}{10^{-10}} \times 100 = 10$		
	1.6×10 ¹⁷ ×	10		
<u>www.a</u> 25	<u>lelightclasses.com</u>	755020	01255	Page 15 of

9	ANS-3
	Sol: $CH_3Cl > CH_2Cl_2 > CHCl_3 > CCl_4$
10	ANS-1
	Sol: The shape of SF ₄ is - See saw
11	ANS-4
	Sol: Molecular shapes of SF_4 , CF_4 & XeF_4 are different with 1,0 and 2 lone pair of electrons 74. Which one of the following molecules is planar
12	ANS-4
	Sol: BF_3 is trigonal planar
13	ANS-3
	Sol: $NO \rightarrow NO^+$ Bond order is increased from 2.5-3 and magnetic behavior is changed from paramagnetic to diamagnetic
14	ANS-1
	Sol: O_2^- is paramagnetic
15	ANS-1 Sol: Bond order is inversely proportional to bond length
16	ANS-1
10	Sol: O_2^{2-} as four antibonding electron pairs
17	ANS-4 Sol: Bond order is inversely proportional to bond length CO bond order = 3 CO_2 bond order = 2 CO_3^{2-} bond order = 4/3
18	ANS-1 Sol: The species CN ⁻ , CO and NO ⁺ has same bond order three and isoelectronic
19	$ \begin{array}{c} \text{ANS-1} \\ \text{Sol:} & \text{The double bond in } C_2 \text{ molecule consists of both } \pi \text{ bonds} \\ & \text{Four electrons are present in two } \pi \text{ bonding molecular orbitals in } C_2 \end{array} $
20	ANS-2 Sol: H ₂ is diamagnetic
21	ANS-2 Sol: Stability is proportional to bond order and stability decreases with increase in number of antibonding electrons
22	ANS-3 Sol: H ₂ O has higher boiling point than H ₂ S because of intermolecular hydrogen bonding in liquid H ₂ O
	delightclasses.com 7550201255 Page 16 of

23	ANS-3		
	Sol:	Bond order is inversely proportional to bond length	
		In H_2O_2 , O-O bond order = 1	
		In O_3 , O-O bond order = 1.5	
		In O_2 , O-O bond order = 2	
24	ANS-3		
	Sol:	<i>NH</i> ₃ -107.8	
		BeF ₂ -180	
		H ₂ O-104.5	
		CH ₄ -109.5	
25	ANS-1		
	Sol:	H ₂ O molecule in ice can form four hydrogen bonds	
26	ANS-3		
20			
	Sol:	Bonds present in $CuSO_4.5H_2O$ are Electrovalent, covalent, coordinate and I	nydrogen bonds
27	ANS-3		
	Sol:	Maximum covalency of nitrogen is 4 but in structure II nitrogen has five both	nds
28	ANS-3		
	Sol:	AlF ₃ , CaC ₂	
29	ANS-3		
	Sol:	Due to absence of mobility of ions	
30	ANS-2		
	Sol:	Ionic bond is formed b/w metal with low I.E and non metal with high electro	on affinity
31	ANS-3		
	Sol:	LiCl is covalent & Nacl is ionic	
32	ANS-1		
	Sol:	As the charge on the cation increases ionic character decreases	
		-	
33	ANS-4		
	Sol:	MgS	
34	ANS-1		
	Sol:	As the charge on the cation increases degree of polarization increases	
25	ANG		
35	ANS-4 Sol:	$ns^2np^6 nd^{10}$	
	301.	iis np iid	
36	ANS-4		
	Sol:	Expanded octet is super octet	
37	ANS-4	* *	
	Sol:	S and P_x , P_x and P_z , P_y & P_z , P_x & P_y , S & P_y	

• •		
38	ANS-1 Sol: Boron hydrides are electron deficient compounds	
39	ANS-2 Sol: -1, 0, +1	
40	ANS-1 $\alpha \frac{Z^+Z^-}{Z^+Z^-}$	
	Sol: Lattice energy $r_c + r_a$	
41	ANS-2	
	Sol: $3d_{z}^{2}$	
42	ANS-4 Sol: $sp^3 - s \& sp^3 -$	
43	ANS-2 Sol: sp ³	
44	ANS-2 Sol: PCl ₅	
45	ANS-2	
	Sol: $\frac{Total ch \arg e}{no.of \ oxygen \ atoms} = \frac{-3}{4} = -0.75$	
46	ANS-4	
47	ANS-3	
48	ANS-2	
	Sol: Lattice energy $\propto \frac{Z^+ Z^-}{\left(r_c^+ + r_a^-\right)}$ where Z^+ is charge on cation and Z^- is	s charge
	on anion.	
49	ANS-2	
	Sol: $AB_2E_2 \rightarrow H_2O, OF_2$	
50	ANS-2	
	Sol: $XeOF_4 \rightarrow$ Square Ryamidal, Sp^3d^2	
	ANS-3	

<u>25</u>

	Sol: $NO_2^-, NO_3^- \rightarrow Sp^2, Sp^2$
52	ANS-2
	Sol: $MX_3, \mu = 0$
	$ Planar \rightarrow Sp^2 $
	%S = 33.3%
53	ANS-1
	Sol:
	$N_2 = B.O = 3$
	$N_2^+ = B.O = 2.5$
	$O_2 = B.O = 2$
	$O_2^+ = B.O = 2.5$
54	ANS-1
54	ANS-1
55	ANS-2
56	ANS-3
57	ANS-1
	Sol: $N_2: \sigma_{1s^2} \sigma_{1s^2}^* \sigma_{2s^2}^* \sigma_{2s^2}^* \left(\pi_{2p_x^2} = \pi_{2p_y^2} \right) \sigma_{2p_z^2}$
	$O_{2}:\sigma_{1s^{2}}\sigma_{1s^{2}}^{*}\sigma_{2s^{2}}\sigma_{2s^{2}}^{*}\sigma_{2p_{z}^{2}}\left(\pi_{2p_{x}^{2}}=\pi_{2p_{y}^{2}}\right)\left(\pi_{2p_{x}^{1}}^{*}=\pi_{2p_{y}^{1}}^{*}\right)$
	$ \begin{bmatrix} O_2 : \sigma_{1s^2} \sigma_{2s^2} \sigma_{2s^2} \sigma_{2s^2} \sigma_{2p_z^2} \\ \sigma_{2p_x^2} \sigma_{2p_y^2} \end{bmatrix} \begin{bmatrix} \pi_{2p_x^2} = \pi_{2p_y^2} \\ \sigma_{2p_x^2} \sigma_{2p_y^2} \end{bmatrix} $
58	ANS-2
	Solu $P : \pi = \pi^* = \pi^* = \pi^*$
	Sol: $B_2: \sigma_{1s^2} \sigma_{1s^2}^* \sigma_{2s^2} \sigma_{2s^2}^* \sigma_{2s^2}^* \left(\pi_{2p_x^1} = \pi_{2p_y^1} \right)$
59	ANS-1
	$N_2 \rightarrow N_2^+$
60	
60	ANS-3 8-4
	Sol: B.O. in $C_2 = \frac{8-4}{2} = 2$
61	ANS-1
	Sol: In NH_3 , the hydrogen is partially +vely charged
62	ANS-3
04	Sol: 1s never from π – molecular orbital

63	ANS-4
64	ANS-4
	Sol: If we consider no mixing of 2s and 2p orbitals, then
	$C_{2} = \sigma_{1s2} \sigma_{1s2}^{*} \sigma_{2s2} \sigma_{2s2}^{*} \sigma_{2pz} \sigma_{2pz}^{*} \left(\pi_{2px} = \pi_{2py} \right)$
	B.O = $\frac{8-4}{2}$ = 2; paramagnetic
65	ANS-2 Sol: Glycerol has more no. of OH groups than alcohol
66	ANS-1 Sol: The stability of a molecule α bond order Bond order : $Li_2 = 1; Li_2^- = 0.5; Li_2^+ = 0.5$
	Though Li_2^+ and Li_2^- ions have same B.O; Li_2^- is less stable because its valence electron is present in anti bonding M.O
67	ANS-3
68	ANS-3
	Sol: All the given contain dative bonds
69	ANS-1
70	ANS-2 Sol: The unpaired electron is present in σ_{2P_z}
71	ANS-3
	Sol: According to molecular orbital configurations
72	ANS-1 Sol: In KO ₂ , O ₂ - □ (superoxide) has one unpaired electron and NO ₂ also has one unpaired electron. Thus, KO ₂ and NO ₂ are paramagnetic
73	ANS-2 Sol: B The combining atomic orbitals must have the same symmetry about the molecular axis
74	ANS-2 Sol: Because it does not lead to bond formation.
75	ANS-4 Sol: $O_2^+ 5/2$
www.c	<u>delightclasses.com</u> 7550201255 Page 20 of

	$O_2^- 3/2$	
	NO 2.5	
76	ANS-1	
	Sol: Fact	
77	ANS-4	
	Sol: N_2^+ is paramagnetic[D]	
78	ANS-3	
	Sol: It forms extensive intramolecular hydrogen bonding	
79	ANS-1 Sol: Since it has intramolecular H bonding	
80	ANS-2 Sol: In all other cases hydrogen bonding dominates other forces	
81	ANS-1 Sol: Has intra molecular H-bonding	
82	ANS-3	
	Sol: F being most electronegative will yield strongest H–bond	
88	ANS-1	
	И-0 Н-0	
	H = 0 - H = 0	
	Sol: NO_2 NO_2	
	Intramolecular H-bond intermolecular H-bond and steam volat	ile
	and boiling pt. is higher.	
84	ANS-2	
	Sol: Molecular mas is relatively less and no H- bonding	
85	In which case hydrogen bond will not be observed -	
	1) H ₃ O ₂ - 2) H ₂ O 3) HF	<u>4)</u> AsH ₃
	Sol: It cannot form H- bondindg	
86	ANS-4	
	Sol: H_2SO_4	
	H–O–S–O–H ↓ O	
	delightclasses.com 7550201255	Page 21 of
25		

87	ANS-1
	Sol:
88	ANS-2 Sol: $O_2^+ = 2.5 \& O_2 = 2$
89	ANS-4 Sol: O_2 has 10 bonding electrons and 6 anti bonding electrons and 6 anti bonding electrons.
90	ANS-2 Sol: $H - C = N$
91	ANS-4 Sol: It depends upon whether the molecule belongs to before N_2 or after N_2
92	ANS-2 Sol: NCERT- XI page no. 126
93	ANS-2 Sol: Since no of electrons are same bond orders are also same. NCERT page no. 105
94	ANS-1 Sol: Ncert- XI Page no 104
95	ANS-2
95	ANS-3
97	ANS-2
98	ANS-4 Sol: $CH_2 = C = CH_2$
99	ANS-3 Sol: Partial charge = $\frac{1.2 \times 10^{-18}}{1.0 \times 10^{-8}} = 1.2 \times 10^{-10}$ esu The fraction of an electronic charge is = $\frac{1.2 \times 10^{-10}}{4.8 \times 10^{-10}} = 0.25$ or 25%
100	ANS-2 : 0: H - C - H Sol:
<u>www.d</u> 25	<u>elightclasses.com</u> 7550201255 Page 22 of

	Ö
	\dot{O} . \dot{O} . It has $2\sigma, 1\pi$ and 6 lone pairs
101	ANS-4
	Sol: $CaC_2 \Rightarrow Ca^{+2} \& C_2^{2-}$
	$\bar{C} \equiv \bar{C}$
102	ANS-4
	Sol: % of ionic character= $16(x_A - x_B) + 3.5(x_A - x_B)^2$
103	ANS-4
	Lattice energy depends on charge and size of the ions
104	ANS-2 $PCl_{5(s)}$ is an ionic species i.e.,
	$\begin{bmatrix} PCl_4 \end{bmatrix}^+ \& \begin{bmatrix} PCl_6 \end{bmatrix}^-$
	$\left[PCl_{4}\right]^{+} \Rightarrow sp^{3}$
	$\left[PCl_{6}\right]^{-} \Longrightarrow sp^{3}d^{2}$
105	ANS-2
	$BF_3 \Rightarrow sp^2 \& Triangular planar$
	$BF_4^- \Rightarrow sp^3 \& Tetrahedral$
106	ANS-3 Color $BE \rightarrow cr^2 \ \% Trian color \ relevant$
	Sol: $BF_3 \Rightarrow sp^2 \& Triangular planar$ $BF_4^- \Rightarrow sp^3 \& Tetrahedral$
107	ANS-4 Sol: Lattice energy of NaF>Lattice energy of RbBr
108	ANS-4
100	Sol: $SF_4 \Rightarrow see-saw(1lonevpair)$
	$CF_4 \Rightarrow Tetrahedral(0 lonevpair)$
	$XeF_4 \Rightarrow$ Square planar(2 lone pairs)
109	ANS-2
	Sol: $NO_3^- \Rightarrow sp^2, NO_2^+ \Rightarrow sp, NO_2^- \Rightarrow sp^2$
110	ANS-3 $C_{ab} = 72^{0} 00^{0} 180^{0}$
	Sol: $72^{\circ}, 90^{\circ}, 180^{\circ}$
	delightclasses.com 7550201255 Page 23 of
<u></u>	

111	ANS-2
	Resonance energy = energy of most stable resonating structure - energy of actual structure Sol: $O=C=O \Rightarrow 3$ resonating structures
	C_{i} \rightarrow 3 magazating structures
	$0 \qquad 0 \qquad$
112	ANS-4
	Sol: For III & IV $\Rightarrow \mu \neq 0$
113	ANS-3
	Sol: sp^3 , sp^2 , sp , sp^2 , sp^3
114	Ans-1
115	
116	Ans-3
116	Ans-4
117	
118	Ans-4
	Ans-3
119	
120	Ans-2
120	Ans-1
121	
	Ans-2
122	Ans-2
123	
	Ans-2
124	
125	Ans-2
125	Ans-2
126	Ans-2
127	
	Ans-2

128	
	Ans-4
129	
	Ans-2
130	
	Ans-3