CHEMICAL EQUILIBRIUM

1 Given, $X(g) \rightleftharpoons n Y(g)$; If degree of dissociation is α then K_{C} of the reaction in a vessel of 1 Liter is

1) $\frac{n \alpha^{n}}{1-\alpha}$
2) $\frac{n \alpha}{1-\alpha}$
3) $\frac{(n \alpha)^{n}}{1+\alpha}$
4) $\frac{(n \alpha)^{n}}{1-\alpha}$

2 For the reaction $A(g)+3 B(g) \rightleftharpoons 2 C(g)$ at $27^{\circ} C, 2$ moles of A, 4 moles of B and 6 moles of C are present in 2 litre vessel. If K_{c} for the reaction is 1.2 , the reaction will proceed in

1) forward direction
2) backward reaction
3) neither direction
4) none of these

3 At $527^{\circ} \mathrm{C}$, the reaction given below has $K_{c}=4$

$$
\mathrm{NH}_{3}(g) \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}(g)+\frac{3}{2} \mathrm{H}_{2}(g)
$$

What is the K_{p} for the reaction?

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

1) $16 \times(800 \mathrm{R})^{2}$
2) $\left(\frac{800 R}{4}\right)^{-2}$
3) $\left(\frac{1}{4 \times 800 R}\right)^{2}$
4) None of these
5)

4 For the equilibrium $\mathrm{SO}_{2} \mathrm{Cl}_{2}(g) \rightleftharpoons \mathrm{SO}_{2}(g)+\mathrm{Cl}_{2}(g)$ what is the temperature at which
$\frac{K_{p}(\mathrm{~atm})}{K_{c}(M)}=3$

1) 0.027 K
2) 0.36 K
3) 36.54 K
4) 273 K
$5 \quad$ For the reaction $\mathrm{CO}(g)+\mathrm{Cl}_{2}(g) \rightleftharpoons \mathrm{COCl}_{2}(g)$ the value of $\frac{K_{c}}{K_{p}}$ is equal to
5) $\sqrt{R T}$
6) $R T$
7) $\frac{1}{R T}$
8) 1.0

6 For the reaction $2 \mathrm{NO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{5}(g)$, if the equilibrium constant is K_{p}, then the equilibrium constant for the reaction $2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ would be

1) K_{p}^{2}
2) $\frac{2}{K_{p}}$
3) $\frac{1}{K_{p}^{2}}$
4) $\frac{1}{\sqrt{K_{p}}}$

7 Consider the following gaseous equilibria given below
I) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$; Eqm. Constant $=K_{1}$
II) $\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}$; Eqm. Constant $=K_{2}$
III) $\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}$; Eqm constant $=K_{3}$

The equilibrium constant for the reaction $2 \mathrm{NH}_{3}+\frac{5}{2} \mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O}$; in terms of K_{1}, K_{2} and K_{3} will be

1) $K_{1} K_{2} K_{3}$
2) $\frac{K_{1} K_{2}}{K_{3}}$
3) $\frac{K_{1} K_{3}^{2}}{K_{2}}$
4) $\frac{K_{2} K_{3}^{3}}{K_{1}}$

8 In the reaction $X(g)+Y(g) \rightleftharpoons 2 Z(g), 2$ mole of $X, 1$ mole of Y and 1 mole of Z are placed in a 10 litre vessel and allowed to reach equilibrium. If final concentration of Z is 0.2 M , then K_{c} for the given reaction is

1) 1.60
2) $\frac{80}{3}$
3) $\frac{16}{3}$
4) None of these

9 For the reaction $2 A(g) \rightleftharpoons B(g)+3 C(g)$ at a given temperature $K_{c}=16$. What must be the volume of the flask, if a mixture of 2 mole each of A, B and C exist in equilibrium?

1) $\frac{1}{4}$
2) $\frac{1}{2}$
3) 1
4) None of these

10 When heated, ammonium carbamate decomposes as follows

$$
\mathrm{NH}_{4} \mathrm{COONH}_{2}(s) \rightleftharpoons 2 \mathrm{NH}_{3}(g)+\mathrm{CO}_{2}(g)
$$

At a certain temperature, the equilibrium pressure of the system is $0.318 \mathrm{~atm} . K_{p}$ for the reaction is

1) 0.128
2) 0.426
3) 4.76×10^{-3}
4) None of these

11 The equilibrium constant K_{p} for the reaction

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g})
$$

Is 4.0 at $1660^{\circ} \mathrm{C}$. Initially 0.80 mole H_{2} and 0.80 mole CO_{2} are injected into a 5.0 litre flask. What is the equilibrium concentration of $\mathrm{CO}_{2}(\mathrm{~g})$?

1) 0.533 M
2) 0.0534 M
3) 0.535 M
4) None of these

12 The equilibrium constant for the reaction $\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons \mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g)$ is 5 . How many moles of CO_{2} must be added to 1 litre container already containing 3 moles each of CO and $\mathrm{H}_{2} \mathrm{O}$ to make 2 M equilibrium concentration of CO ?

1) 15
2) 19
3) 5
4) 20

13 At $27^{0} \mathrm{C}$ and 1 atm pressure, $\mathrm{N}_{2} \mathrm{O}_{4}$ is 20% dissociation in 1 litrs container into NO_{2}. According to following equation $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 二 2 \mathrm{NO}_{2}$, What is K_{C}

1) 0.2 M
2) 0.4 M
3) 0.8 M
4) 0.1 M

14 Determine the value of equilibrium constant $\left(K_{c}\right)$ for the reaction

$$
A_{2}(g)+B_{2}(g) \rightleftharpoons 2 A B(g)
$$

If 10 moles of $A_{2} ; 15$ moles of B_{2} and 5 moles of $A B$ are placed in a 2 litre vessel and allowed to come to equilibrium. The final concentration of $A B$ is 7.5 M

1) 4.5
2) 1.5
3) 0.6
4) None of these
$15 \mathrm{Cu}^{2+}$ ions react with Fe^{2+} ions according to the following reaction
$\mathrm{Cu}^{2+}+2 \mathrm{Fe}^{2+} \rightleftharpoons \mathrm{Cu}+2 \mathrm{Fe}^{3+}$
At equilibrium, the concentration of Cu^{2+} ions is not changed by addition of
5) Cu^{2+}
6) Fe^{2+}
7) Cu
8) Fe^{3+}
$16 \quad A B_{3}(g)$ is dissociates as $A B_{3}(g) \rightleftharpoons A B_{2}(g)+\frac{1}{2} B_{2}(g)$
When the initial pressure of $A B_{3}$ is 800 torr and the total pressure developed at equilibrium is 900 torr. What fraction of $A B_{3}(g)$ is dissociated?
9) $10 \% 2) 20 \%$
10) 25%
11) 30%

17 At 1000 K , a sample of pure NO_{2} gas decomposes as

$$
2 \mathrm{NO}_{2}(g) \rightleftharpoons 2 \mathrm{NO}(g)+\mathrm{O}_{2}(\mathrm{~g})
$$

The equilibrium constant K_{p} is 156.25 at , Analysis shows that the partial pressure of O_{2} is 0.25 atm at equilibrium. The partial pressure of NO_{2} at equilibrium is

1) 0.01
2) 0.02
3) 0.04
4) None of these

18 For the dissociation reaction $\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g)$, the degree of dissociation (α) in terms of K_{p} and total equilibrium pressure P is

1) $\alpha=\sqrt{\frac{4 P+K_{p}}{K_{p}}}$
2) $\alpha=\sqrt{\frac{K_{p}}{4 P+K_{p}}}$
3) $\alpha=\sqrt{\frac{K_{p}}{4 P}}$
4) None of these

19 The vapour pressure of mercury is 0.002 mm Hg at $27^{\circ} \mathrm{C}, K_{c}$ for the process $\mathrm{Hg}(\mathrm{l}) \rightleftharpoons \mathrm{Hg}(\mathrm{g})$ is

1) 0.002 M
2) $8.12 \times 10^{-5} \mathrm{M}$
3) $6.48 \times 10^{-5} \mathrm{M}$
4) $1.068 \times 10^{-7} \mathrm{M}$
$20 K_{p}$ has the value of $10^{-6} \mathrm{~atm}^{3}$ and $10^{-4} \mathrm{~atm}^{3}$ at 298 K and 323 K respectively for the reaction

$$
\mathrm{CuSO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \rightleftharpoons \mathrm{CuSO}_{4}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

$\Delta_{r} H^{0}$ for the reaction is

1) $7.7 \mathrm{kl} / \mathrm{mol}$
2) $-147.41 \mathrm{~kJ} / \mathrm{mol}$
3) $147.41 \mathrm{~kJ} / \mathrm{mol}$
4) None of these

21 The most stable oxides of nitrogen will be

1) $2 \mathrm{NO}_{2}(g) \rightleftharpoons \mathrm{N}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) ; \mathrm{K}=6.7 \times 10^{16} \mathrm{~mol} \mathrm{~L}^{-1}$
2) $2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~N}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) ; \mathrm{K}=1.2 \times 10^{24} \mathrm{~mol}^{5} L^{-5}$
3) $2 \mathrm{NO}(\mathrm{g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) ; \mathrm{K}=2.2 \times 10^{30}$
4) $2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) ; \mathrm{K}=3.5 \times 10^{33} \mathrm{~mol} L^{-1}$

22 The following equilibrium constants were determined at 1120 K :

$$
\begin{aligned}
& 2 \mathrm{CO}(\mathrm{~g}) \rightleftharpoons C(s)+\mathrm{CO}_{2}(\mathrm{~g}) ; \quad K_{p 1}=10^{-14} \mathrm{~atm}^{-1} \\
& \mathrm{CO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{COCl}_{2}(\mathrm{~g}) ; \quad K_{p 2}=6 \times 10^{-3} \mathrm{~atm}^{-1}
\end{aligned}
$$

What is the equilibrium constant K_{c} for the following reaction at 1120 K

$$
\mathrm{C}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{COCl}_{2}(\mathrm{~g})
$$

1) $3.31 \times 10^{11} \mathrm{M}^{-1}$
2) $5.5 \times 10^{10} \mathrm{M}^{-1}$
3) $5.51 \times 10^{6} \mathrm{M}^{-1}$
4) None of these

23 One mole of $N_{2}(g)$ is mixed with 2 moles of $H_{2}(g)$ in a 4 litre vessel. If 50% of $N_{2}(g)$ is converted to $\mathrm{NH}_{3}(g)$ by the following reaction:

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g)
$$

What will be the value of K_{c} for the following equilibrium?

$$
\mathrm{NH}_{3}(g) \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}(g)+\frac{3}{2} \mathrm{H}_{2}(g)
$$

1) 256
2) 16
3) $\frac{1}{16}$
4) None of these

24 Consider the reaction, whose $K_{c}=33$,
$\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$ If 0.1 mol each of SO_{2} and NO_{2} at are placed in 1 L container, What is the concentration of SO_{3} at equilibrium?

1) 0.003 M
2) 0.015 M
3) 0.085 M
4) 0.097 M

25 Consider the partial decomposition of A as

$$
2 A(g) \rightleftharpoons 2 B(g)+C(g)
$$

At equilibrium 700 mL gaseous misture contains 100 mL of gas C at 10 atm and 300 K . What is the value of K_{p} for the reaction?

1) $\frac{40}{7}$
2) $\frac{1}{28}$
3) $\frac{10}{28}$
4) $\frac{28}{10}$

26 What concentration of CO_{2} be in equilibrium with 0.025 M CO at 120° for the reaction $\mathrm{FeO}(\mathrm{s})+\mathrm{CO}(\mathrm{g}) \rightleftharpoons \mathrm{Fe}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$ If the value of $K_{C}=5.0$?

1) 0.125 M
2) 0.0125 M
3) 1.25 M
4) 12.5 M

27 For the reaction, $2 A+B \rightleftharpoons 3 C$ equilibrium constant is K . If the concentration of A is increased by 2 times, the new equilibrium constant will be

1) 2 K
2) $\frac{K}{2}$
3) 4 K
4) K

28 Two moles of PCl_{5} are heated in a closed vessel of 2 litre capacity. When the equilibrium is attained 40% of it has been found to dissociated. What is the value of K_{C} in $\mathrm{mol} / \mathrm{dm}^{3}$

1) 0.532
2) 0.266
3) 0.133
4) 0.174

29 One mole of SO_{3} was placed In a two litre vessel at a certain temperature. The following equilibrium was established in the vessel

$$
2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

The equilibrium mixture reacted with 0.2 mole KMnO_{4} in acidic medium. Hence K_{c} is

1) 0.50
2) 0.25
3) 0.125
4) None of these

30 Two solid compounds X and Y dissociates at a certain temperature as follows

$$
\begin{aligned}
& X(s) \rightleftharpoons A(g)+2 B(g) ; K_{p 1}=9 \times 10^{-3} \mathrm{~atm}^{3} \\
& Y(s) \rightleftharpoons 2 B(g)+C(g) ; K_{p 2}=4.5 \times 10^{-3} \mathrm{~atm}^{3}
\end{aligned}
$$

The total pressure of gases over a mixture of X and Y is

1) 4.5 atm
2) 0.45 atm
3) 0.6 atm
4) None of these

311 mol of N_{2} is mixed with 3 mol of H_{2} in a litre containter. If 50% of N_{2} is converted into ammonia by the reaction $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g)$, then the total number of moles of gas at the equilibrium are

1) 1.5
2) 4.5
3) 3.0
4) 6.0

32 47. Which one of the following is not a reversible reaction

1) $2 \mathrm{HI} \rightleftharpoons \mathrm{H}_{2(g)}+I_{2(g)}$
2) $P C l_{5(g)} \rightleftharpoons P C l_{3(g)}+C l_{2(g)}$
3) $2 \mathrm{KClO}_{3(s)} \rightleftharpoons 2 \mathrm{KCl}_{(s)}+3 \mathrm{O}_{2(\mathrm{~g})}$
4) $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}$
338.50 g of NH_{3} is present in 250 ml volume. Its active mass is
5) 1.0 Mole L^{-1}
6) $0.5 \mathrm{Mole} \mathrm{L}^{-1}$
7) $1.5 \mathrm{Mole} \mathrm{L}^{-1}$
8) $2.0 \mathrm{Mole} \mathrm{L}^{-1}$

34 What is the equilibrium constant expression for thereaction, $P_{4(s)}+5 O_{2(g)} \rightleftharpoons P_{4} O_{10(s)}$?

1) $K_{C}=\frac{\left[P_{4} O_{10}\right]}{\left[P_{4}\right]\left[O_{2}\right]^{5}}$
2) $K_{C}=\frac{\left[P_{4} O_{10}\right]}{5\left[P_{4}\right]\left[O_{2}\right]}$
3) $K_{C}=\left[O_{2}\right]^{5}$
4) $K_{C}=\frac{1}{\left[O_{2}\right]^{5}}$

35 Equilibrium constant for the reaction, $2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NOCl}_{(\mathrm{g})}$ is correctly given by the expression

1) $K=\frac{[\mathrm{NOCl}]^{2}}{[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]}$
2) $K=\frac{[2 \mathrm{NoCl}]}{[2 \mathrm{No}]\left[\mathrm{Cl}_{2}\right]}$
3) $K=\frac{[\mathrm{NO}]^{2}+\left[\mathrm{Cl}_{2}\right]}{[\mathrm{NOCl}]}$
4) $K=\frac{[N O]^{2}\left[\mathrm{Cl}^{2}\right]}{[N O C l]^{2}}$

36 For the reaction $A B_{(g)} \rightleftharpoons A_{(g)}+B_{(g)}, \mathrm{AB}$ is 33% dissociated at a total pressure of P , therefore P is related to K_{p} by one of the following option?

1) $P=K_{p}$
2) $P=3 K_{p}$
3) $P=4 K_{p}$
4) $P=8 K_{p}$

37 For a system, $\mathrm{A}+2 \mathrm{~B} \rightleftharpoons \mathrm{C}$, the equilibrium concentration are $[\mathrm{A}]=0.06,[\mathrm{~B}]=0.12 \&[\mathrm{C}]=0.216$. the K_{c} for the reaction is

1) 125
2) 415
3) 4×10^{-3}
4) 250

38 The equilibrium concentration of $\mathrm{x}, \mathrm{y} \& \mathrm{yx}_{2}$ are $4,2 \& 2$ respectively for the equilibrium $2 x+y \rightleftharpoons y x_{2}$. The value of equilibrium constant, K_{c} is

1) 0.625
2)6.25
2) 0.0625
3) 62.5

39 For the reaction, $H_{2(\mathrm{~g})}+I_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{HI}_{(\mathrm{g})}$ the equilibrium constant K_{p} changes with

1) Total pressure
2) Catalyst
3) The amounts of $\mathrm{H}_{2} \& \mathrm{I}_{2}$ taken
4) Temperature
$40 \quad 3.1 \mathrm{~mol}^{2} \mathrm{FeCl}_{3}$ and 3.2 mol of $\mathrm{NH}_{4} \mathrm{SCN}$ are added to one litre of water. At equilibrium, 3.0 mol of $\mathrm{Fe} \mathrm{SCN}^{+2}$ are formed. The equilibrium constant K_{C} of the reaction $\mathrm{Fe}^{+3}+\mathrm{SCN}^{-} \rightleftharpoons \mathrm{FeSCN}^{+2}$ will be
5) 6.66×10^{-3}
6) 0.30
7) 3.30
8) 150

41 The equilibrium constant for the given reaction is 100. $\mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}_{2(\mathrm{~g})}$
What is the equilibrium constant for the reaction given below
$\mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$

1) 10
2) 1
3) 0.1
4) 0.01

42 In which of the following reactions K_{p} is less than K_{C} ?

1) $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}_{2(\mathrm{~g})}$
2) $2 \mathrm{HI}_{(\mathrm{g})} \rightleftharpoons \mathrm{H}_{2(\mathrm{~g})}+I_{2(\mathrm{~g})}$
3) $2 \mathrm{SO}_{2(\mathrm{~g})}+O_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{3(\mathrm{~g})}$
4) $P C l_{5(g)} \rightleftharpoons P C l_{3(g)}+C l_{2(g)}$

43 Equilibrium constant depends on

1) The actual quantities of reactants and products
2) The presence of a catalyst
3) Temperature
4) The presence of inert material

4415 moles of H_{2} and 5.2 moles of I_{2} are mixed and allowed to attain equilibrium at $500^{\circ} \mathrm{C}$. At equilibrium the concentration of HI is found to be 10 moles. The equilibrium constant for the formation of HI is

1) 50
2) 15
3) 100
4) 25

45 If different quantities of methanol and acetic acid are used in the following reversible reaction at constant temperature.
$\mathrm{H}_{3} \mathrm{CCOOH}_{(l)}+\mathrm{CH}_{3} \mathrm{OH}_{(l)} \rightleftharpoons \mathrm{H}_{3} \mathrm{CCOOH}_{(l)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$
Equilibrium constant will have values which will be?

1) Different in all cases
2) Same in all cases
3) Higher in cases where higher concentrations of ethanol is used
4) Higher in cases where higher concentration of acetic acid is used

46 The unit of equilibrium constant, K_{c} for the reaction $A+B \rightleftharpoons C$ would be

1) $\mathrm{Mol}^{-1} \mathrm{~L}$
2) MolL^{-1}
3) mol L
4) no unit

47 The units of K_{p} in the following reaction are
$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}$

1) atm
2) atm^{-2}
3) atm^{2}
4) atm^{-1}

48 In a general reaction, $A+B \rightleftharpoons A B$, which value of equilibrium constant most favours the production of AB ?

1) 9.0×10^{-3}
2) 3.5×10^{-3}
3) 4.0×10^{-7}
4) 4.0×10^{-12}

49 During thermal dissociation of a gas, the vapour density

1) Remains the same
2) Increases
3) Decreases
4) Increases in some cases and decreases in others

50 The vapour density fully dissociated $\mathrm{NH}_{4} \mathrm{Cl}$ would be

1) Less than half of the vapour density of pure $\mathrm{NH}_{4} \mathrm{Cl}$
2) Double of the vapour density of pure $\mathrm{NH}_{4} \mathrm{Cl}$
3) Half of the vapour density of pure $\mathrm{NH}_{4} \mathrm{Cl}$
4) One third of the vapour density of pure $\mathrm{NH}_{4} \mathrm{Cl}$

51 In lime kilns, the following reversible reaction, $\mathrm{CaCO}_{3(s)} \rightleftharpoons \mathrm{CaO}_{(s)}+\mathrm{CO}_{2(\mathrm{~g})}$ proceeds completion because of

1) High temperature
2) CO_{2} escapes
3) Low temperature
4) Molecular mass of CaO is less than that of CaCO_{3}

52 For the reaction, $C_{(s)}+\mathrm{CO}_{2(g)} \rightleftharpoons 2 \mathrm{Co}(g)$. The partial pressure of $\mathrm{CO}_{2} \& \mathrm{CO}$ are $2.0 \& 4.0 \mathrm{~atm}$ respectively, at equilibrium. The value of K_{p} of the reaction is

1) 0.5
2) 4.0
3) 32.0
4) 8.0

53 Lechatelier's principle is applicable to

1) Only homogeneous chemical reversible reactions
2) Only heterogeneous chemical reversible reactions
3) Only physical equilibrium
4) All systems, chemical or physical , in equilibrium

54 For the following reaction at $250^{\circ} \mathrm{C}$, the value of K_{c} is 26 . Then the value of K_{p} at the same temperature will be $P C l_{3(g)}+C l_{2(g)} \rightleftharpoons P C l_{5(g)}$

1) 0.57
2) 0.61
3) 0.83
4)0.91

55 Manufacture of $\mathrm{SO}_{3}, 2 \mathrm{SO}_{2(\mathrm{~g})}+O_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{3(\mathrm{~g})}+\mathrm{X} \mathrm{cal}$, most favourable conditions of temperature and pressure for greater yield of SO_{3} are

1) Low temperature and low pressure
2) High temperature and low pressure
3) High temperature and low pressure
4) Low temperature and high pressure

56 In the reaction $N_{2(g)}+3 H_{2(g)} \rightleftharpoons 2 \mathrm{NH}_{3(g)} \Delta H=-93.6 \mathrm{~kJ}$, the yield of ammonia does not increase when

1) Pressure is increased
2) Pressure is decreased
3) Temperature is lowered
4) Volume of the reaction vessel is decreased

57 In an exothermic reaction, a $10^{\circ} \mathrm{C}$ rise in temperature will

1) Decrease the value of equilibrium constant
2) Double the value of equilibrium constant
3) Not produce any change in equilibrium constant
4) Produce some increase in equilibrium constant

58 If K_{p} for a reaction, 0.05 atm at 1000 k , its K_{c} in terms of R will be

1) 20000 R
2) 0.02 R
3) 5×10^{-5}
4) $\frac{5 \times 10^{-5}}{R}$
$59 \mathrm{XY}_{2}$ dissociates as $X Y_{2(g)} \rightleftharpoons X Y_{(g)}+Y_{(g)}$. Initial pressure of $X Y_{2}$ is 600 mm hg . The total pressure at equilibrium is 800 mm hg. Assuming volume of system to remain constant, the value of K_{p} is
5) 50
6) 100
7) 200
8) 400

60 Which of the following reaction will be favoured at low pressure?

1) $H_{2(\mathrm{~g})}+I_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{HI}_{(\mathrm{g})}$
2) $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}$
3) $\mathrm{PCl}_{5(g)} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2(\mathrm{~g})}$
4) $\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}_{(\mathrm{g})}$
$61 \mathrm{~K}_{\mathrm{p}} / \mathrm{K}_{\mathrm{c}}$ for the reaction, $\mathrm{CO}_{(\mathrm{g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{CO}_{2(\mathrm{~g})}$ is
5) $R T$
6) $\frac{1}{\sqrt{R T}}$
7) $\sqrt{R T}$
8) 1

62 For the reactions,
$A \rightleftharpoons B, K_{C}=1 ; B \rightleftharpoons C, K_{C}=3$
$C \rightleftharpoons D, K_{C}=5 \mathrm{~K}_{\mathrm{c}}$ for the reaction $A \rightleftharpoons D$ is

1) 15
2) 5
3) 3
4) 1

63 The equilibrium constant of the reaction,
$H_{2(g)}+I_{2(g)} \rightleftharpoons 2 H_{(g)}$ iiis 50. If the volume of the container is reduced to one half of its original value, the equilibrium constant will be

1) 25
2) 50
3) 75
4) 10

64 In gaseous equilibrium the correct relation between $\mathrm{K}_{\mathrm{c}} \& \mathrm{~K}_{\mathrm{p}}$ is

1) $K_{c}=K_{p}(R T)^{\Delta n}$
2) $K_{p}=K_{c}(R T)^{\Delta n}$
3) $\frac{K_{C}}{R T}=\left(K_{p}\right)^{\Delta n}$
4) $\frac{K_{p}}{R T}=\left(K_{c}\right)^{\Delta n}$

65 In which of the following equilibrium $\mathrm{K}_{\mathrm{c}} \& \mathrm{~K}_{\mathrm{p}}$ are not equal?

1) $2 \mathrm{NO}_{(\mathrm{g})} \rightleftharpoons N_{2(\mathrm{~g})}+O_{2(\mathrm{~g})}$
2) $\mathrm{SO}_{2(\mathrm{~g})}+\mathrm{NO}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{SO}_{3(\mathrm{~g})}+\mathrm{NO}_{(\mathrm{g})}$
3) $\mathrm{H}_{2(\mathrm{~g})}+I_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{HI}_{(\mathrm{g})}$
4) $2 C_{(s)}+O_{2(g)} \rightleftharpoons 2 \mathrm{CO}_{2(g)}$

66 The reaction quotient Q for
$N_{2(g)}+3 H_{2(g)} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}$ is given by $Q=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{3}\right]^{3}}$. The reaction will proceed in backward direction when

1) $Q=K_{c}$
2) $Q<K_{c}$
3) $Q>K_{c}$
4) $A=0$

67 For the reaction $P C l_{3(g)}+C l_{2(g)} \rightleftharpoons P C l_{5(g)}$. The value K_{p} at $250^{\circ} \mathrm{C}$ is $0.61 \mathrm{~atm}^{-1}$. The value of K_{c} at this temperature will be

1) $15(\mathrm{~mol} / \mathrm{L})^{-1}$
2) $26(\mathrm{~mol} / \mathrm{L})^{-1}$
3) $35(\mathrm{~mol} / \mathrm{L})^{-1}$
4) $52(\mathrm{~mol} / \mathrm{L})^{-1}$

68 Consider the reaction, $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$ in a closed container at equilibrium. What would be the effect of addition of CaCO_{3} on the equilibrium concentration of CO_{2} ?

1) Increases 2) Unpredictable
2) Decreases
3) Remains unaffected
$69 \mathrm{Ka}_{1}, \mathrm{Ka}_{2}$ and Ka_{3} are the respective ionisation constants for the following reactions.
$\mathrm{H}_{2} \mathrm{~S} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HS}^{-}$
$H S^{-} \rightleftharpoons H^{+}+S^{2-}$
$\mathrm{H}_{2} \mathrm{~S} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{S}^{2-}$
The correct relationship between $\mathrm{Ka}_{1}, \mathrm{Ka}_{2}$ and Ka_{3} is
4) $K a_{3}=K a_{1} \times K a_{2}$
5) $K a_{3}=K a_{1}+K a_{2}$
6) $K a_{3}=K a_{1}-K a_{2}$
7) $K a_{3}=K a_{1} / K a_{2}$

70 One mole each of ' A ' and ' B ' and 3 mole each of ' C ' and ' D ' are placed in 1-L flask, if equilibrium constant is 2.25 for $A+B \rightleftharpoons C+D$, equilibrium concentrations of ' A ' and ' C ' will be in the ratio of

1) $3: 2$
2) $1: 2$
3) $2: 3$
4) $2: 1$

71 In the reaction $2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{3(\mathrm{~g})}$ at equilibrium 2 moles of $\mathrm{SO}_{2}, 1$ mole of $\mathrm{O}_{2}, 2$ moles of SO_{3} are present in 1 litre vessel. To have 3 moles of SO_{3} at equilibrium additional moles of dioxygen required under similar experimental conditions is

1) 0.5
2) 9
3) 4.5
4) 8.5

72 In the process $\mathrm{I}_{2}+\mathrm{I}^{-} \rightleftharpoons \mathrm{I}_{3}{ }^{-}$(in aqueous medium), initially there are 2 mole I_{2} and 2 mole I^{-}. But at equilibrium due to addition of $\mathrm{AgNO}_{3(\mathrm{aq})}, 1.75$ moles of yellow ppt is obtained. K_{C} for the process is $\left(\mathrm{V}_{\text {flask }}=1 \mathrm{dm}^{3}\right)$ nearly

1) 0.08
2) 0.02
3) 0.16
4) 0.12

73 A 2 litre vessel contains 2 moles of H_{2} and 4 moles of HI . 50% of the reaction has completed for the attainment of equilibrium. The value of K_{C} for the reaction
$\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{HI}_{(\mathrm{g})}$ is

1) 0.75
2) 1.33
3) 2.45
4) 0.54
$74 \quad \mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
The equilibrium pressure at $25^{\circ} \mathrm{C}$ is 0.660 atm . What is K_{p} for the reaction?
5) 0.109
6) 0.218
7) 1.89
8) 2.18

75 At a certain temperature, only $50 \% \mathrm{HI}$ is dissociated at equilibrium in the following reaction: $2 \mathrm{HI}(g) \rightleftharpoons \mathrm{H}_{2}(g)+I_{2}(g)$ The equilibrium constant for this reaction is

1) 0.25
2) 1.0
3) 3.0
4) 0.5

76 For reaction, $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$, the value of K_{C} at $250^{\circ} \mathrm{C}$ is 26 . The value of K_{P} at this temperature will be

1) 0.014
2) 0.83
3) 0.57
4) 0.46

KEY

1	Ans-4 Sol: $\quad x \Leftrightarrow n y$ $\begin{gathered} 1-\alpha \\ K_{C}=\frac{n \alpha}{1-\alpha)^{n}} \\ \hline \end{gathered}$
2	Ans-1 Sol: $Q_{C}=\frac{\left(\frac{6}{2}\right)^{2}}{\left(\frac{2}{3}\right)\left(\frac{4}{3}\right)^{3}}=\frac{9}{8}$ $Q_{C}<K_{C}$ so reaction will proceed in forward direction
3	Ans-3 Sol: $\quad K_{p}=\left(\frac{1}{K_{C} R T}\right)^{2}=\left(\frac{1}{4 \times R \times 800}\right)^{2}$
4	Ans-3 Sol: $\frac{K_{p}}{K_{C}}=3=R \times T=0.0821 T$
5	Ans-2 Sol: $\quad \frac{K_{p}}{K_{C}}=R T[(\Delta n=1)]$
6	Ans-3 Sol: $\quad K=\frac{1}{K_{p}{ }^{2}}$
7	Ans-4 Sol: Relation between constants
8	Ans-3 Sol: $\quad x+y \rightleftharpoons 2 Z$ $\begin{array}{lll}0.2-x & 0.1-x & 0.1+2 x\end{array}$

9 Ans-2
Sol: $\quad K_{c}=\frac{n_{B} n_{C}{ }^{3}}{n_{A}{ }^{2}} \times \frac{1}{V^{2}}$

$$
16=\frac{2 \times 2^{3}}{2^{2} \times V^{2}} \Rightarrow V=\frac{1}{2}
$$

10 Ans-3
Sol: $\quad P_{\text {total }}=3 P$
$\Rightarrow P=\frac{0.318}{3}=0.106$
$\therefore K_{p}=4 P^{3}=4.76 \times 10^{-3}$
11 Ans-2
Sol: $\quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}(\mathrm{g})$
Moles of eqm $\quad 0.8-\mathrm{x} \quad 0.8-\mathrm{x} \quad \mathrm{x} \quad \mathrm{x}$
Conc. at eqm $\frac{0.8-x}{5}\left(\frac{0.8-x}{5}\right)\left(\frac{x}{5}\right)\left(\frac{x}{5}\right)$
$\therefore \Delta n_{g}=0$
$\therefore K_{c}=\frac{\left(\frac{x}{5}\right)^{2}}{\left(\frac{0.8-\mathrm{x}}{5}\right)^{2}}$
$2=\frac{x}{0.8-x}$
$x=0.533$
$\left[\mathrm{CO}_{2}(\mathrm{~g})\right]=\frac{0.8-0.533}{5}$
$0.267 \div 5=0.0534$

12 Ans-2
Sol:

$$
\begin{aligned}
& \mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CO}_{2}+\mathrm{H}_{2} \\
& \text { initial conc. } 3 \quad 3 \quad x \quad 0 \\
& \text { Ateqm } 22(x+1) \quad 1 \\
& 5=\frac{(x+1)}{4}=20=x+1 \\
& x=19
\end{aligned}
$$

13 Ans-1
Sol: $\quad \mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$
$1-X \quad 2 X$
$0.8 \quad 0.4$
$K_{C}=\frac{0.4 \times 0.4}{0.8}$

14 Ans-1
Sol:

$$
A_{2}(\mathrm{~g})+B_{2}(g) \rightleftharpoons 2 A B(g)
$$

initial conc $\quad 10 / 2 \quad 15 / 2 \quad 5 / 2$
Ateqm $\quad 5-x \quad 7.5-x \quad 2.5+2 x$
$\therefore 2.5+2 x=7.5$
$\Rightarrow x=2.5$
$K_{C}=\frac{(7.5)^{2}}{2.5 \times 5}=4.5$

15

Ans-3
Sol: Solid does not effect

$$
\begin{aligned}
& P_{C l_{2}}=P_{P C l_{3}} \\
& \Rightarrow 2 \times 0.40=0.80 \mathrm{~atm} \\
& P_{P C l_{5}}=2 \times 0.2=0.40 \mathrm{~atm} \\
& \therefore K_{P}=\frac{P_{P C l_{3}} \cdot P_{C l_{2}}}{P_{P C l_{5}}} \\
& =\frac{0.80 \times 0.80}{0.40} \\
& =1.6 \mathrm{~atm}
\end{aligned}
$$

16 Ans-3
Sol:

$$
A B_{3}(\mathrm{~g}) \rightleftharpoons A B_{2}(\mathrm{~g})+\frac{1}{2} B_{2}(\mathrm{~g})
$$

At eqm $800-x \quad x \quad x / 2$
$800-x+x+\frac{x}{2}=900 \Rightarrow x=200$
$\%$ Dissociated $=\frac{200}{800} \times 100=25$
17 Ans-2
Sol: $\quad K_{p}=156.27=\frac{P_{\mathrm{NO}}{ }^{2} \times 0.25}{P_{\mathrm{NO} 2}{ }^{2}}$

Ans-2
Sol: $\quad \mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$

$$
K_{p}=\frac{\left(\frac{2 \alpha}{1+\alpha} \times P\right)^{2}}{\left(\frac{1-\alpha}{1+\alpha} \times P\right)}
$$

19 Ans-4
Sol: $\quad K_{c}=\frac{K_{p}}{R T}=\frac{0.002 / 760}{0.0821 \times 300}$
20 Ans-3
Sol: $\quad \log \frac{K_{2}}{K_{1}}=\frac{\Delta H}{2.303 R} \times \frac{T_{2}-T_{1}}{T_{1} \times T_{2}}$

Ans-1

Sol: Less K more stable

22
Ans-1
Sol: Relation between constants
23
Ans-3
Sol: $\quad \mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$ $\begin{array}{llll}\text { At .eq.st } & 0.125 & 0.125 & 0.25\end{array}$
$K_{C}=\frac{(0.25)^{2}}{(0.125)(0.125)^{3}}=256$
24 Ans-3
Sol: $\quad \mathrm{SO}_{2}+\mathrm{NO}_{2} \rightleftharpoons \mathrm{SO}_{3}+\mathrm{NO}$

$$
\begin{array}{cccc}
0.1 & 0.1 & 0 & 0 \\
0.1-x & 0.1-x & x^{x} & x \\
& 33=\frac{x^{2}}{(0.1-x)^{2}} &
\end{array}
$$

25 Ans-3
Sol: (c) \because Initially only A is present so at eqm B and C should be present in 2:1
$2 A(g) \rightleftharpoons 2 B(g)+C(g)$
$400 \mathrm{~mL} \quad 200 \mathrm{~mL} \quad 100 \mathrm{~mL}$
For ideal gases volume \% = mole \%

$$
K_{P}=\frac{\left(\frac{200}{700} \times 10\right)^{2}\left(\frac{100}{700} \times 10\right)}{\left(\frac{400}{700} \times 10\right)^{2}}=\frac{10}{28}=0.133 \mathrm{~atm}
$$

26	$\begin{array}{l}\text { Ans-1 } \\ \text { Sol: }\end{array} \quad K_{C}=5=\frac{\left[\mathrm{CO}_{2}\right]}{[\mathrm{CO}]}$

27 Ans-4
Sol: K is constant
28 Ans-2
Sol: $\quad P C l_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$

$$
\frac{2-0.8}{2} \quad \frac{0.8}{2} \quad \frac{0.8}{2}
$$

29 Ans-3
Sol: $\quad 2 \mathrm{SO}_{3}(g) \rightleftharpoons 2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g)$
Moles at eqm $1-2 x \quad 2 x \quad x$
Only $\mathrm{SO}_{2}(\mathrm{O} . \mathrm{No}=4)$ Will be oxidined so equivalent of $\mathrm{SO}_{2}=$ equivalent of KMnO_{4} $2 x \times 2=0.2 \times 5$
$\Rightarrow \quad 2 x=0.5$
$K_{0}=\frac{\left[\frac{0.5}{2}\right]^{2}\left[\frac{0.25}{2}\right]}{\left[\frac{0.5}{2}\right]}=0.125$
30 Ans-2
Sol: relation between K

31 Ans-3
Sol: $\quad 1-x+3-3 x+2 x$

32 Ans-3
Sol: $\quad 2 \mathrm{KClO}_{3(\mathrm{~s})} \rightleftharpoons 2 \mathrm{KCl}_{(s)}+3 \mathrm{O}_{2(g)}$ decomposition reaction in open vessel irreversible reaction
33 Ans-4
Sol: $\quad \mathrm{NH}_{3}$ active mass $=\frac{8.5}{17} \times \frac{1000}{250}=2 M L^{-1}$.
34 Ans-4
Sol: Solid and liquid concentration is taken as unity
35 Ans-1
Sol: $\quad K_{C}=\frac{[\text { Product }]}{[\operatorname{Re} a \mathrm{tan} t]}=\frac{[\mathrm{NaCl}]^{2}}{\left[\mathrm{NO}^{2}\left[\mathrm{Cl}_{2}\right]\right.}$.

36 ANS-4
Sol: $\quad A B_{(g)} \rightleftharpoons A_{(g)}+B_{(g)}$

$$
\begin{aligned}
& 1 \\
& 1-\frac{1}{3} \frac{1}{3} \frac{1}{3} \\
& P_{(A B)}=\frac{2 / 3}{4 / 3} \times P=\frac{P}{2} P_{(A)}=P_{(B)}=\frac{1 / 3}{4 / 3} \times P=\frac{P}{4} \\
& K_{p}=\frac{\mathrm{P} / 4 \times P / 4}{\mathrm{P} / 2}=\frac{P}{8} \\
& P=8 K_{P}
\end{aligned}
$$

37 ANS-4
Sol: $\quad K_{C}=\frac{[C]}{[A][B]^{2}}=\frac{0.216}{[0.06][0.12]^{2}}=\frac{0.216}{0.864 \times 10^{-3}}$

$$
=250
$$

38 ANS-3
Sol: $\quad K_{C}=\frac{2}{(4)^{2} \times 2}=\frac{2}{32}=0.0625$
39 ANS-4
Sol: Temperature changes, pressure changes then K_{P} also changes.
40 ANS-4
Sol: $\quad \mathrm{Fe}^{+3}+\mathrm{SCN}^{\Theta} \rightleftharpoons \mathrm{FeSCN}^{+2}$

$$
\begin{aligned}
& t_{\text {inital }} 3.13 .2 \quad 0 \\
& t_{e q} \frac{0.1}{1} \frac{0.2}{1} \quad \frac{3}{1} \\
& K_{C}=\frac{\left[F e S C N^{+2}\right]}{\left[F e^{+3}\right]\left[S C N^{-}\right]}=\frac{3}{0.1 \times 0.2}=150
\end{aligned}
$$

41 ANS-3
Sol: $\quad K_{C}=\frac{1}{\sqrt{K_{C_{1}}}}=\frac{1}{\sqrt{100}}=\frac{1}{10}=0.1$
42 ANS-3
Sol: $\quad K_{P}=K_{C}(R T)^{\Delta n}$
$\Delta n=2-3=-1$
$K_{P}=K_{C}(R T)^{-1}$
$K_{P} \cdot R T=K_{C}$
$\therefore K_{P}<K_{C}$

43 ANS-3
Sol: Temperature

```
44 ANS-1
Sol: \(\quad H_{2}+I_{2} \rightleftharpoons 2 H I\)
\[
\begin{array}{lll}
15 & 5.2 & 0
\end{array}
\]
\[
\begin{array}{lll}
15-5 & 5.2-5 & 10
\end{array}
\]
\[
K_{C}=\frac{100}{10 \times 0.2}=50
\]
```

45
ANS-2
Sol: K_{C} value remains same but it varies with temperature.

46 ANS-1
Sol: $\quad \mathrm{K}_{\mathrm{c}}=\frac{\mathrm{mol} / \mathrm{L}}{\mathrm{mol} / \mathrm{L} \times \mathrm{mol} / \mathrm{L}}=\mathrm{mol}^{-1} \mathrm{~L}$
47
ANS-2
Sol: $K_{\mathrm{p}}=\frac{(\mathrm{atm})^{2}}{\mathrm{~atm} \times(\mathrm{atm})^{3}}=\mathrm{atm}^{-2}$
48
ANS-1
Sol: K_{c} value should nearer to 10^{-3} favoursfor product formation
49 ANS-3
Sol: Vapour density decreases in thermal dissociation.
50
ANS-3
Sol: For 100% dissociation density is reduces too half of the initial value
51 ANS-2
Sol: In open vessel decomposition reactions are irreversible
52 ANS-4
Sol: $\mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{P}_{\mathrm{CO}}\right)^{2}}{\left(\mathrm{P}_{\mathrm{CO}_{2}}\right)}=\frac{(4)^{2}}{2}=\frac{16}{2}=8$
53 ANS-4
Sol: All type of systems which are may be physical or chemical equilibrium
54 ANS-2
Sol: $\quad K_{p}=K_{c}(R T)^{1}$
$\mathrm{K}_{\mathrm{p}}=26 \times 0.0821 \times 523$
$=\frac{260.08}{0.0821}=0.6$

64 ANS-2
Sol: $\quad K_{p}=K_{c}(R T)^{\Delta n}$

65

ANS-1
Sol: $\log \frac{\mathrm{K}_{\mathrm{p}}^{1}}{\mathrm{~K}_{\mathrm{p}}}=\frac{-\Delta \mathrm{H}}{2.303 \mathrm{R}}\left[\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}\right]$
$\Delta H=-$ Ve hence T_{2} is higher than T_{1}
So, $\log K_{p}^{1}-\log K_{p}=-V e$
$\log K_{p}>\log K_{p}^{1}$
Or $K_{p}>K_{p}^{1}$

ANS-3
Sol: $Q_{c}>K_{c}$ reaction proceeds backward direction
67 ANS-2
Sol: $\mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \longrightarrow \mathrm{PCl}_{5(\mathrm{~g})}$

$$
\Delta \mathrm{n}=-1
$$

$$
\mathrm{K}_{\mathrm{p}}=0.61 \mathrm{~atm}^{-1}
$$

$$
\mathrm{K}_{\mathrm{c}}=\mathrm{K}_{\mathrm{p}}(\mathrm{RT})^{-\Delta \mathrm{n}}=0.61(0.0821 \times 523)
$$

$=26 \mathrm{~mol} /$ litre

ANS-4
Sol: $\quad \mathrm{K}_{\mathrm{p}}=\mathrm{P}_{\mathrm{CO}_{2}}=$ constant

ANS-1
Sol: $\quad \mathrm{H}_{2} \mathrm{~S} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HS}^{-}$

$$
H S^{-} \rightleftharpoons H^{+}+S^{2-}
$$

$\mathrm{H}_{2} \mathrm{~S} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{S}^{2-}$ when equilibriums are added resultant equilibrium constant is equal to product of K_{eq} of added equations

70

ANS-3
Sol: $A+B \rightleftharpoons C+D$

$$
\begin{aligned}
& 1 \quad 1 \quad 3 \quad 3 \\
& 1-x \quad 1-x \quad 3+x \quad 3+x \\
& K_{e}=\frac{[C][D]}{[A][B]} \\
& K_{e}=\frac{(3+x)^{2}}{(1-x)^{2}}=2.25=(1.5)^{2} \\
& \frac{3+x}{1-x}=1.5 \\
& 3+x=1.5-1.5 x \\
& 2.5 x=-1.5 \\
& x=\frac{-1.5}{2.5}=\frac{-3}{5} \\
& {[A]} \\
& \frac{[C]}{[C]} \frac{1-x}{3+x}=\frac{1+\frac{3}{5}}{3-\frac{3}{5}}=\frac{8}{12}=\frac{2}{3}
\end{aligned}
$$

71
ANS-4
Sol: $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}$
$\begin{array}{lll}2 & 1 & 2\end{array}$
$\Rightarrow K_{C}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}=\frac{4}{4}=1$
$2-2 x \quad 1-x \quad 2+2 x$
1 y 3
$K_{C}=\frac{3^{2}}{1^{2} \times y}=1$
$y=9$
\therefore additional O_{2} required $y-x=9-0.5=8.5$
72
ANS-1
Sol: $I_{2}+I^{-} \rightleftharpoons I_{3}^{-}$
220
$2-x 2-x \quad x$
$\begin{array}{lll}1.75 & 1.75 & 0.25\end{array}$
$k_{C}=\frac{0.25}{1.75 \times 1.75}=0.08$

73

ANS-2
Sol: $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$

$$
\begin{array}{ccl}
2 & 0 & 4 \\
2+x & x & 4-2 x \\
3 & 1 & 4-2=2 \\
K_{C}=\frac{2 \times 2}{3}=1.33 &
\end{array}
$$

ANS-1
Sol: $\mathrm{NH}_{4} \mathrm{HS} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{~S}$
$\quad(\mathrm{s}) \quad(\mathrm{g}) \quad(\mathrm{g})$
$P_{t}=P_{N H_{3}}+P_{H_{2} S}=0.66$
$\therefore P_{N H_{3}}=P_{H_{2} S}=0.33$
$K p=P_{N H_{3}} \cdot P_{H_{2} S}=0.33 \times 0.33$
$=0.109$

75
ANS-1
Sol: $2 \mathrm{HI} \rightleftharpoons \mathrm{H}_{2}+\mathrm{I}_{2}$

$$
\begin{array}{ccc}
1 & 0 & 0 \\
1-2 x & x & x \\
1-0.5 & 0.25 & 0.25 \\
K_{C}=\frac{0.25 \times 0.25}{0.5 \times 0.5} & =0.25
\end{array}
$$

76
ANS-1
Sol: $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$

$$
\begin{aligned}
& K_{p}=K_{C} \cdot(R T)^{\Delta n} \\
= & 26(0.0821 \times 523)^{-2} \\
= & 0.014
\end{aligned}
$$

