VTH GROUP | 1 | In a molecule | of phosphorus (V) | oxide there are | |---|---------------|-------------------|-----------------| | | _ | _ | _ | - 1) 4 P-P, 10 P-O and 4 P=O bonds - 1) 4 P-P, 10 P-O and 4 P-O bonds - 3) 2 P-O and 4 P=P bonds - 2) 12 P-O and 4 P=O bonds - 4) 6 P-P; 12 P-O and 4 P=P bonds - 2 conc.HNO₃ reacts with iodine to give - 1) HI 2) HOI - 3) HOIO₂ - 4) HOIO₃ - **3** A: Although PF₅, PCl₅ are known the pentahalides of Nitrogen have not been observed - R: Phosphorus has lower electro-negativity than Nitrogen - 1. A and R are true and R is the correct explanation of A - 2. A and R are true and R is not the correct explanation of A - 3. A is true, R is false - 4. Both A and R are false - 4 Which of the following order is correct - (1) NO > N₂O : Bond length of N–O bond - (3) $N_2O_3 > N_2O_4$: O-N-O bond angle - (2) $N_2O_3 > N_2O_5$: Acidic character - (4) $NO2 = N_2O_5$: O-N-O bond angle - 5 Zinc reacts with dilute HNO_3 to give - 1) N_2O 2) NO 3) *NO*₂ 4) N_2 - 6 The following element does not have allotropes - 1) N 2) P 3) As - 4) Sb - Which of the following on decomposition does not give nitrogen gas - 1) NH₄NO₂ - 2) (NH₄)₂Cr₂O₇ - 3) Ba(N₃)₂ 4) NH₄NO₃ - 8 Boiling point order of VA group hydrides - 1) $NH_3 < PH_3 < AsH_3 < SbH_3$ 2) $NH_3 > PH_3 > AsH_3 > SbH_3$ 3) $PH_3 > SbH_3 > NH_3 > AsH_3$ 4) $PH_3 < AsH_3 < NH_3 < SbH_3$ | | Solid PCl ₅ exists as | S | | | |----|--|---|--|--| | | 1) <i>PCl</i> ₅ | 2) <i>PCl</i> ⁺ | 3) <i>PCl</i> ₆ | 4) PCl_4^+ and PCl_6^- | | | | • | | | | 10 | The reaction of Zino | c with dilute and conce | entrated nitric acid respe | ectively produces | | | 1) <i>NO</i> ₂ & NO | | 3) NO ₂ & N ₂ O | | | | | | | | | 11 | P_4O_{10} has short and | long P – O bonds. The | number of short P – O | bond in this compound is – | | | 1) 1 | | 3) 3 | | | | | , | , | , | | 12 | The maximum num | ber of P – H bonds are | contained in which of | the following molecules? | | | 1) H_3PO_2 | | | | | | | | | | | 13 | Which of the follow | ving does not contain F | P-O-P bond ? | | | | | $2. (HPO_3)_3$ | | 4. $H_4P_2O_7$ | | | | | | | | 14 | Acidic salt among | the following is | | | | | _ | 2) Na ₂ H ₂ P ₂ O ₇ | 3) Na ₃ PO ₄ | 4) Na ₂ HPO ₃ | | | | | | | | 15 | Nitrogen can not be | e obtained by heating | | | | | 1) Ba $(N_3)_2$ | 2) $Pb(NO_3)_2$ | 3) $\left(NH_4\right)_2 Cr_2$ | O_7 4) NH_4NO_2 | | | | | | | | 16 | At 0°C, NO ₂ is | | | | | | | | | | | | 1) Paramagnetic, | _ | , | netic, coloured gas | | | Paramagnetic, c Diamagnetic, c | _ | , | netic, coloured gas
metic, coloured solid | | | 3) Diamagnetic, c | oloured solid | 4) Paramag | netic, coloured solid | | 17 | 3) Diamagnetic, c | oloured solid | 4) Paramag | netic, coloured solid P2O5 into ortho phosphonic acid is | | 17 | 3) Diamagnetic, c | oloured solid | 4) Paramag | netic, coloured solid | | | 3) Diamagnetic, c The number of molec 1) 2 | oloured solid
ules of water needed to o
2) 3 | 4) Paramag | netic, coloured solid 205 into ortho phosphonic acid is 4) 5 | | 17 | 3) Diamagnetic, c The number of molec 1) 2 Two oxides of Nitrog compound of Nitroge | oloured solid ules of water needed to of 2) 3 en NO and NO2 are allown(X) when compound (X) | 4) Paramag convert one molecule of F 3) 4 | netic, coloured solid 205 into ortho phosphonic acid is 4) 5 | | | 3) Diamagnetic, c The number of molec 1) 2 Two oxides of Nitroge compound of Nitroge (Y). The shape of ani- | oloured solid ules of water needed to of 2) 3 en NO and NO2 are allown(X) when compound (X) on of (Y) molecule is | 4) Paramag convert one molecule of F 3) 4 ved to react together at 24 (c) reacts with water to yie | netic, coloured solid 205 into ortho phosphonic acid is 4) 5 43K and form a coloured ld another compound of Nitrogen | | | 3) Diamagnetic, c The number of molec 1) 2 Two oxides of Nitrog compound of Nitroge | oloured solid ules of water needed to of 2) 3 en NO and NO2 are allown(X) when compound (X) | 4) Paramag convert one molecule of F 3) 4 | pnetic, coloured solid P2O5 into ortho phosphonic acid is 4) 5 | | 18 | The number of molection of Nitroge compound of Nitroge (Y). The shape of anital triangular planar | oloured solid ules of water needed to of 2) 3 en NO and NO2 are allow n(X) when compound (X) on of (Y) molecule is 2) bent or angular | 4) Paramag convert one molecule of F 3) 4 ved to react together at 24 (1) reacts with water to yie 3) tetrahedron | metic, coloured solid 205 into ortho phosphonic acid is 4) 5 43K and form a coloured 1d another compound of Nitrogen 4) square planar | | | The number of molect 1) 2 Two oxides of Nitrog compound of Nitroge (Y). The shape of animal triangular planar | oloured solid ules of water needed to of 2) 3 en NO and NO2 are allow n(X) when compound (X) on of (Y) molecule is 2) bent or angular der of boiling point of | 4) Paramag convert one molecule of F 3) 4 ved to react together at 24 (2) reacts with water to yie 3) tetrahedron Chydrides of group 15 | metic, coloured solid 205 into ortho phosphonic acid is 4) 5 43K and form a coloured 1d another compound of Nitrogen 4) square planar elements is - | | 18 | The number of molect 1) 2 Two oxides of Nitroge compound of Nitroge (Y). The shape of animal triangular planar The increasing ord (1) PH ₃ < AsH ₃ < | oloured solid ules of water needed to of 2) 3 en NO and NO2 are allow n(X) when compound (X) on of (Y) molecule is 2) bent or angular der of boiling point of NH3 < SbH3 | 4) Paramag convert one molecule of F 3) 4 ved to react together at 24 2) reacts with water to yie 3) tetrahedron 2 hydrides of group 15 (2) PH ₃ < AsI | metic, coloured solid 205 into ortho phosphonic acid is 4) 5 43K and form a coloured 1d another compound of Nitrogen 4) square planar elements is - H3 < SbH3 < NH3 | | 18 | The number of molect 1) 2 Two oxides of Nitrog compound of Nitroge (Y). The shape of animal triangular planar | oloured solid ules of water needed to of 2) 3 en NO and NO2 are allow n(X) when compound (X) on of (Y) molecule is 2) bent or angular der of boiling point of NH3 < SbH3 | 4) Paramag convert one molecule of F 3) 4 ved to react together at 24 2) reacts with water to yie 3) tetrahedron 2 hydrides of group 15 (2) PH ₃ < AsI | metic, coloured solid 205 into ortho phosphonic acid is 4) 5 43K and form a coloured 1d another compound of Nitrogen 4) square planar elements is - | | 18 | The number of molect 1) 2 Two oxides of Nitroge compound of Nitroge (Y). The shape of animal triangular planar The increasing ord (1) PH ₃ < AsH ₃ < | oloured solid ules of water needed to of 2) 3 en NO and NO2 are allow n(X) when compound (X) on of (Y) molecule is 2) bent or angular der of boiling point of NH3 < SbH3 | 4) Paramag convert one molecule of F 3) 4 ved to react together at 24 2) reacts with water to yie 3) tetrahedron 2 hydrides of group 15 (2) PH ₃ < AsI | metic, coloured solid 205 into ortho phosphonic acid is 4) 5 43K and form a coloured 1d another compound of Nitrogen 4) square planar elements is - H3 < SbH3 < NH3 | | going from N to Bi. This shows that gradually- (1) The basic strength of the hydrides increases (2) Almost pure p-orbitals are used for M-H bonding (3) The bond energies of M-H bonds increase (4) The bond pairs of electrons become nearer to the central atom 21 P ₄ O ₁₀ has short and long P-O bonds. The number of short P-O bonds in this compound is - (1) 1 (2) 2 (3) 3 (4) 4 22 Which one of the following is not an acid salt - (1) NaH ₂ PO ₂ (2) NaH ₂ PO ₃ (3) NaH ₂ PO ₄ (4) Na ₂ HPO ₄ | | |--|---| | (2) Almost pure p-orbitals are used for M-H bonding (3) The bond energies of M-H bonds increase (4) The bond pairs of electrons become nearer to the central atom P4O10 has short and long P-O bonds. The number of short P-O bonds in this compound is - (1) 1 (2) 2 (3) 3 (4) 4 Which one of the following is not an acid salt - | | | (2) Almost pure p-orbitals are used for M-H bonding (3) The bond energies of M-H bonds increase (4) The bond pairs of electrons become nearer to the central atom P4O10 has short and long P-O bonds. The number of short P-O bonds in this compound is - (1) 1 (2) 2 (3) 3 (4) 4 Which one of the following is not an acid salt - | | | (3) The bond energies of M-H bonds increase (4) The bond pairs of electrons become nearer to the central atom 21 P ₄ O ₁₀ has short and long P-O bonds. The number of short P-O bonds in this compound is - (1) 1 (2) 2 (3) 3 (4) 4 22 Which one of the following is not an acid salt - | | | (4) The bond pairs of electrons become nearer to the central atom P ₄ O ₁₀ has short and long P-O bonds. The number of short P-O bonds in this compound is - (1) 1 (2) 2 (3) 3 (4) 4 Which one of the following is not an acid salt - | | | 21 P ₄ O ₁₀ has short and long P-O bonds. The number of short P-O bonds in this compound is - (1) 1 (2) 2 (3) 3 (4) 4 22 Which one of the following is not an acid salt - | | | (1) 1 (2) 2 (3) 3 (4) 4 22 Which one of the following is not an acid salt - | | | (1) 1 (2) 2 (3) 3 (4) 4 22 Which one of the following is not an acid salt - | | | Which one of the following is not an acid salt - | | | which one of the foliowing is not an acta sair | | | (1) NaHaPOa (2) NaHaPOa (3) NaHaPOa (4) NaaHPO | | | (1) 1 (11) 2 (2) 1 (11) 2 (3) | - | | | | | When excess of water is added to BiCl ₃ solution | | | (1) Ionization of BiCl ₃ is increased | | | (2) A white ppt. of Bi(OH) ₃ is obtained | | | (3) BiCl ₃ is hydrolysed to give white ppt. of BiOCl | | | (4) BiCl ₃ is precipitated | | | | | | 24 Skin becomes yellow in conc. HNO ₃ because - | | | (1) The proteins are converted into xanthoproteins | | | (2) HNO ₃ acts as a dehydrating agent | | | (3) NItrocellulose is formed | | | (4) HNO ₃ acts as an oxidising agent | | | | | | 25 Choose the incorrect statement - | | | (1) Solid PCl ₅ exists as tetrahedral [PCl ₄] ⁺ and octahadral [PCl ₆] ⁻ ions | | | (2) Solid PBr ₅ exists as [PBr ₄] ⁺ Br ⁻ | | | (3) Solid N ₂ O ₅ exists as NO ₂ ⁺ NO ₃ ⁻ | | | (4) Oxides of phosphorus P ₂ O ₃ and P ₂ O ₅ exist as monomers | | | | | | 26 Ammonia reacts with excess of chlorine to form - | | | (1) N_2 and NH_4Cl (2) NCl_3 and HCl (3) NH_4Cl and NCl_3 (4) N_2 and HCl | | | | | | 27 | PCl ₃ reacts with wat | er to form - | | | |----|---|--|--|---| | | (1) PH ₃ | (2) H ₃ PO ₃ and HCl | (3) POCl ₃ | $(4) H_3 PO_4$ | | | | | | | | 28 | The correct order of d | lecreasing acid strength of | of oxy acids of group 15 | elements is - | | | (1) HNO3 > H3SbO4 | > H ₃ AsO ₄ $>$ H ₃ PO ₄ | (2) $H_3PO_4 > H_3AsO$ | $_4 > \text{H}_3\text{SbO}_4 > \text{HNO}_3$ | | | (3) $HNO_3 > H_3PO_4$ | > H ₃ AsO ₄ > H ₃ SbO ₄ | (4) HNO3 > H3AsO4 | $_{4}$ > $_{1}$ PO ₄ > $_{3}$ SbO ₄ | | | | | | | | 29 | On heating a mixture | of NH ₄ Cl and KNO ₂ , w | ve get - | | | | | (2) KHN ₄ (NO ₃) ₂ | | (4) NO | | | (=) = ================================= | (=) 4(- : - 3)/2 | (-)2 | (1) 21 2 | | 30 | Which of the follow | ing oxides of nitrogen | vic neutrol | | | | | | | (4) N-O | | | (1) N_2O_5 | (2) N_2O_3 | (3) N_2O_4 | $(4) N_2O$ | | | | | | | | 31 | _ | phosphorus do not forms I | - | | | | | nt between phosphorus ato | | | | | (3) $p^n - p^n$ bonding is s | trong (4) |) Multiple bond is formed | d easily | | 22 | G - 1' 1 | h 1 - 4 - 1 - 1 | | | | 32 | - | hosphate is known as - | | (4) 57' (1) | | | (1) Calgon | (2) Permutit | (3) Natalite | (4) Nitrolim | | 33 | Least acidic and mos | t acidic oxides of nitroge | en ore _ | | | 33 | | (2) N ₂ O, N ₂ O ₄ | | (4) N2O. N2O2 | | | (=)=-2=,=-2=3 | (-) - 1 2 - 3 - 1 2 - 4 | (=)=12=,=1= | (1) = 12 = 3 | | 34 | Aqua regia is mixture | e of – | | | | | | (2) 3HNO ₃ + HCl | (3) H ₃ PO ₄ + HCl | (4) PH3 + HClO | | | 2 | | | | | 35 | The number of mole | cules of water needed to | o convert one molecul | e of P ₂ O ₅ into | | | orthophosphoric acid | | | 2 3 | | | (1) 2 | (2) 6 | (3) 4 | (4) 5 | | | | | | | | 36 | The wrong statemen | t about ammonia is - | | | | | | with oxygen at 700°C i | in the presence of pla | tinum | | | (2) NH, gives black | precipitate with calom | el | | | | 5 | d by P_2O_5 , H_2SO_4 and | | | | | (4) NH ₃ gives white | | 2 | | | | (+) 11113 gives winte | Tumes with ITCI | | | | | | | | | | 37 | Which of the fo | ollowing trihalides is | not hydrolysed - | | |----|----------------------------|---------------------------------------|-----------------------------|---| | | (1) PF ₃ | (2) PCl ₃ | (3) AsCl ₃ | (4) SbCl ₃ | | | (-) - 3 | (-)3 | () 3 | (7) | | 38 | In the compound | s of the type POX ₂ . P | atoms show multiple bo | nding of the type - | | | | | | (4) None of these | | | (1) P P | (2) a a | (3) P G | (1) Itohe of these | | 39 | How many P-O b | onds and how many lon | e pairs respectively are pr | esent in P ₄ O ₆ molecule - | | | (1) 12, 4 | (2) 8, 8 | (3) 12, 16 | (4) 12, 12 | | | | | | | | 40 | Ammonia read | cts with Nessler's re | agent to give - | | | | (1) Deep blue | precipitate | (2) Whi | te precipitate | | | (3) Green pred | cipitate | (4) Bro | wn precipitate | | | • | • | | | | 41 | Liquid ammonia | is used in refrigerators | because - | | | | (1) It has high di | - | | solubility in water | | | (3) Of its basicity | y | (4) It has high l | neat of evaporation | | | | | | | | 42 | Red phosphorus | is less reactive than y | vellow phosphorus beca | use - | | | (1) Its colour is | red | (2) It is highly | polymerised | | | (3) It is tetratom | nic | (4) It is hard | | | | | | | | | 43 | Mixture used in | Holme's signal is - | | | | | (1) CaC_2 and (| CaCl ₂ | (2) CaCl ₂ | and Ca ₃ P ₂ | | | (3) CaC ₂ and (| Ca ₃ N ₂ | (4) CaC ₂ | and Ca ₃ P ₂ | | | _ | J _ | - | | | 44 | Which out of the | e following gases is ob | tained when ammoniun | n dichromate is heated - | | | (1) Oxygen | (2) Ammonia | (3) Nitrogen | (4) Nitrous oxide | | | | | | | | 45 | Among the trih | alides of nitrogen w | hich one is most basic | - | | | (1) NF ₃ | (2) NCl ₃ | (3) NI ₃ | (4) NBr ₃ | | | (-) 3 | (-)5 | (-/5 | () 5 | | 46 | The correct sea | nence of decrease in | the bond angle of the | following hydrides is -: | | | - | > AsH ₃ > SbH ₃ | | $AsH_3 > PH_3 > SbH_3$ | | | | 2 2 | | 5 5 5 | | | (3) 30113/ ASII | $I_3 > PH_3 > NH_3$ | (4) FII3/1 | $NH_3 > AsH_3 > SbH_3$ | | | | | | | | 47 | The low reactivity | of nitrogen is due to | - | | |----|---|----------------------------|-------------------------------------|-------------------------------------| | | (1) Small atomic ra | adius | (2) High electron | negativity | | | (3) Stable configur | ration | (4) High bond of | lissociation energy | | | | | | | | 48 | Which one of the | following does not u | ndergo hydrolysis - | | | | (1) AsCl ₃ | (2) SbCl ₃ | (3) PCl ₃ | (4) NF ₃ | | | | | . , , , | , , , | | 49 | Which one of the fo | llowing properties of v | vhite phosphorous are sha | ared by red phosphorous | | | (1) It dissolves in C | | (2) It burns when he | , | | | | OH to give PH ₃ | | | | | (5) It leaves with the | ion to give mig | (1) It phosphoreseen | ces in un | | 50 | Which one of the | following pentaflu | orides cannot be form | ed - | | | (1) PF ₅ | (2) AsF ₅ | (3) SbF ₅ | 4 - 5 | | | (1) 115 | (2) Asi 5 | (3) 3015 | $(4) NF_5$ | | 51 | m1 11 1 11 | 0370 | | | | 21 | The dimerisation of | of NO_2 as the tempera | ture is lowered is accon | npanied by - | | | (1) An increase in | - | (2) A darkening | | | | (3) A decrease in p | paramagnetism | (4) The formatio | n of a colloid | | | | | | | | 52 | | | parate nitric oxide from | | | | (1) Sodium nitropi | | (2) Ferrous sul | | | | (3) Nessler's reage | nt | (4) Tollen's rea | gent | | | | | | | | 53 | - | btained by the reaction | | . 1 . 24 27 077 | | | (1) White P is heat | | (2) Red P is heat | | | | (3) Ca ₃ P ₂ reacts w | ith water | $(4) P_4 O_6$ is boile | ed with water | | | | | | | | 54 | In P ₄ O ₆ the numb | er of oxygen atoms bo | onded to each phosphort | is atom is - | | | (1) 1.5 | (2) 2 | (3) 3 | (4) 4 | | | | | | | | 55 | | orm stable pentahalide | | | | | (1) Its higher electron | | (2) Its smaller size | | | | (3) Inert pair effect | | (4) Non availability | of d-orbitals | | | ***** | | | | | 56 | | ring is basic in nature - | | (4) II Ct-O | | | (1) H ₃ PO ₃ | $(2) H_3 BiO_3$ | (3) H ₃ AsO ₃ | (4) H ₃ SbO ₃ | | | | | | | | 57 | Acidic nitrogen | hydride is - | | | |----|------------------------------------|--|---------------------------|--| | | _ | $(2) N_3 H$ | (3) NH ₂ OH | (4) NH ₃ | | | | | _ | | | 58 | PCl ₅ exists but | NCl ₅ does not because - | | | | | (1) Nitrogen has | s no vacant d-orbitals | (2) NCl ₅ is t | ınstable | | | (3) Nitrogen ato | om is much smaller | (4) Nitrogen | is highly inert. | | | | | | | | 59 | Flower of phosp | phorous are - | | | | | (1) Arsenic | (2) Phosphorous | (3) P_4O_6 | (4) P_4O_{10} | | | | | | | | 60 | Aqueous solution | of ammonia consists of - | | | | | $(1) H^{+}$ | (2) OH ⁻ | $(3) NH_4^+$ | (4) NH ₄ ⁺ and OH ⁻ | | | | | | | | 61 | Which of the fol | lowing phosphorus oxyac | ids can act as a redu | cing agent ? | | | (1) H ₃ PO ₃ | $(2) H_3 PO_4$ | (3) HPO ₃ | $(4) H_4 P_2 O_7$ | | | | | | | | 62 | | phorous is heated with caustic | - | | | | $(1) PH_3 + NaH_2P$ | PO_3 (2) $PH_3 + NaH_2PO_2$ | $(3) PH_3 + Na_2HPO_3$ | $(4) PH_3 + NaH_2PO_4$ | | 63 | The D. D. D. | 11111 | | | | 03 | | ond angle in white phospl | | (4) 1000 20! | | | (1) 120° | (2) 90° | (3) 60° | (4) 109° 28' | | 64 | Dhocnhina produ | ices smoky rings when it c | omes in contact with | n oir becouse | | | (1) It reacts with | | (2) It reacts with | | | | (3) It burns in air | - | | mpurities of P ₂ H ₄ | | | | | | 1 2 T | | 65 | Liquor ammonia | ı is - | | | | | (1) Ammonium | | (2) Liquified am | monia gas | | | (3) Concentrated | l solution of NH ₃ in water | (4) A solution of | f NH ₃ in alcohol | | | | | | | | 66 | Pearl white is - | | | | | | (1) AsOCl | (2) SbOCl | (3) BiOCl | $(4) (NH_4)_2 CO_3$ | | | | | | | | | | | | | | 67 | PCl ₅ is kept in | n well stoppered bottle | s because - | | |----|------------------------------------|------------------------------------|--------------------------------------|--------------------------------| | | (1) It is highly | volatile | (2) It reac | ts with oxygen | | | (3) It reacts re | adily with moisture | (4) It is ex | xplosive | | | | | | | | 68 | | ollowing oxides will be | least acidic - | | | | (1) P_4O_6 | (2) P_4O_{10} | (3) As ₄ O ₆ | (4) P_2O_5 | | | | | | | | 69 | Which of the fe | ollowing oxy acids of Pl | hosphorus is a reducin | g agent and monobasic - | | | (1) H ₃ PO ₂ | (2) H ₃ PO ₃ | (3) H ₃ PO ₄ | $(4) H_4 P_2 O_7$ | | | | | | | | 70 | Which of the fo | ollowing is used as ana | esthetic - | | | | (1) NH ₃ | (2) NO | (3) N_2O | (4) NO ₂ | | | 5 | | - | - | | 71 | Which forms s | trong $p\pi - p\pi$ bonds? | | | | | | | | (4) D; | | | (1) N | (2) As | (3) P | (4) Bi | | 72 | D1 1:1: | 1 4 1 4 1 4 | | • | | 14 | Phosphide ion | has the electronic struc | ture similar to that of | : | | | (1) N^{3-} | (2) Cl ⁻ | (3) F^{-} | (4) Na ⁺ | | | | | | | | 73 | The correct order | r for decreasing acidic stre | ngth of oxoacids of gp. 15 | is: | | | (1) $HNO_3 > H_3S$ | $SbO_4 > H_3 AsO_4 > H_3 PO_4$ | (2) $H_3PO_4 > A_3SO_4$ | $>H_{3}SbO_{4}>HNO_{3}$ | | | $(3) HNO_3 > H_3I$ | $PO_4 > H_3 AsO_4 > H_3 SbO_4$ | $(4) HNO_3 > H_3 As O$ | $O_4 > H_3 P O_4 > H_3 Sb O_4$ | | | | | | | | 74 | In the atmosphere | N_2 is present as element w | ith O_2 because : | | | | (1) N_2 is more re | eactive | (2) N_2 is inert | | | | (3) N_2 does not r | | (4) N, is actively parts | icinating in the reaction | | | (3) 112 4003 1011 | eact with o_2 | (1) 112 is detively part | icipating in the reaction | | | | | | | | 75 | Which oxyacid o | f nitrogen is obtained when | n NO ₂ is absorbed in cor | nc. H_2SO_4 ? | | | (1) HNO ₂ | (2) HNO ₄ | (3) <i>HNO</i> ₃ | (4) none of these | | | 2 | • | | | | 76 | HNO ₃ oxidizes : | | | | | | | | (2) 50 | (4) All of those | | | (1) H_2O_2 | $(2) H_2S$ | (3) SO ₂ | (4) All of these | | 7 | A compound which leaves behind no residue on heating is: | |----|--| | | (1) $Cu(NO_3)_2$ (2) KNO_3 (3) NH_4NO_3 (4) none of these | | | | | | KEY | | 1 | (2) | | 2 | (3) | | 3 | (2) | | 4 | (4) | | 5 | (1) | | 6 | : (1) Except nitrogen all elements exhibit allotropy (NCERT page no : 167) | | 7 | : (4)
$NH_3NO_3 \to N_2O + 2H_2O$ | | 8 | (4) | | 9 | : (4)
Solid PCl_5 exists as $-PCl_4^+$ and $-PCl_6^-$ | | 10 | : (4) $Zn + dilHNO_3 \rightarrow Zn(NO_3)_2 + H_2O + N_2O$ | | | $Zn + ConHNO_3 \rightarrow Zn(NO_3)_2 + H_2O + N_2O$ | (4) 11 12 | | : (1) | |----|---| | | The structure of the given oxycids of phosphorus are as | | 13 | | | | (3) | | 14 | | | 15 | (2) | | 15 | (2) | | 16 | (2) | | | (3) | | 17 | | | | (3) | | 18 | | | | (2) | | 19 | | | 20 | ANS-1 | | 20 | ANS-2 | | 21 | | | | ANS-4 | | 22 | ANS-1 | | | ANO-1 | | 23 | | | | ANS-3 | | 24 | ANS-1 | | 25 | | | | ANS-4 | | 26 | ANC 2 | | 27 | ANS-2 | | | ANS-2 | | 28 | | | 29 | ANS-3 | | 47 | ANS-3 | | | | | 30 | ANS-4 | |----|-------------| | 31 | ANO-4 | | | ANS-2 | | 32 | | | 00 | ANS-1 | | 33 | ANS-1 | | 34 | | | | ANS-1 | | 35 | ANS-2 | | 36 | ANS-2 | | | ANS-3 | | 37 | | | 38 | ANS-1 | | 38 | ANS-3 | | 39 | | | | ANS-3 | | 40 | ANS-4 | | 41 | | | | ANS-4 | | 42 | ANGO | | 43 | ANS-2 | | | | | | ANS-4 | | 44 | ANC 2 | | | ANS-3 | | 45 | | | | ANS-3 | | 46 | | | 45 | ANS-1 | | 47 | ANS-4 | | 48 | | | | ANS-4 | | _ | 7550201255 | | 49 | | |----------|-------| | | ANS-2 | | 50 | | | | ANS-4 | | 51 | | | | ANS-3 | | 52 | | | | ANS-2 | | 53 | | | 33 | ANS-2 | | - | ANS-2 | | 54 | | | | ANS-3 | | 55 | | | | ANS-3 | | 56 | | | | ANS-2 | | 57 | | | | ANS-2 | | 58 | | | | ANS-1 | | 59 | | | | ANS-4 | | 60 | | | | ANS-4 | | 61 | AND-T | | 01 | ANO 1 | | 60 | ANS-1 | | 62 | ANGO | | | ANS-2 | | 63 | | | | ANS-3 | | 64 | | | | ANS-4 | | 65 | | | | ANS-3 | | 66 | | | | ANS-3 | | 67 | | | | ANS-3 | | 68 | | | 08 | ANC 2 | | | ANS-3 | | | | | 69 | | |------------|--------| | | ANS-1 | | 70 | | | | ANS-3 | | 71 | ANS-1 | | 72 | ANS-2 | | 73 | ANS-3 | | 74 | ANS-2 | | 7 5 | ANS -3 | | 76 | ANS -4 | | 77 | ANS -3 | | | |