

d and f block elements

1	The following belon	gs to d – block bu	ut it is not a transition e	lement
	1) Mn	2) Fe	3) Zn	4) Cr
2	The electronic configu	ration of chromiun	n is :	
	1) $[Ne]3s^23p^63d^44s^2$		2) $[Ne]3s^23p^63d^54s^1$	
	3) $[Ne]3s^23p^53d^54s^2$		4) $[Ne]3s^23p^53d^64s^1$	
3	Which one of the fol	lowing pairs of io	ns have the same electro	onic configuration ?
	1) Cr^{+3} , Fe^{+3}	2) Fe^{+3} , Mn^{+2}	3) Fe^{+3} , (Co^{+3} 4) Sc^{+3} , Cr^{+3}
4	Match the following	; columns		
	Column I (Metal ior	ns)	_	(Magnetic moment (BM)
	A. Cr^{3+}		1. $\sqrt{35}$	
	B. Fe^{2+}		2. $\sqrt{30}$	
	C. <i>Ni</i> ²⁺		3. $\sqrt{24}$	
	D. Mn^{2+}		4. $\sqrt{15}$	
			5. √ 8	
	1) A – 1, B – 3, C – 5		,	- 3, C - 5, D - 1
	3) A – 4, B – 3, C – 5	, D - 1	4) A – 4, B -	- 5, C - 3, D - 1
5	The electronic configuration aqueous medium)?	on of Cu(II) is 3d ⁹ whe	re as that of Cu(I) is 3d ¹⁰ . Wh	ich of the following is correct (in
	1) Cu(II) is more stable		2) Cu(II) is less stable	
	3) Cu(I) and Cu(II) are equa	lly stable		
	4) Stability of Cu(I) and Cu(I) depends on nature o	of copper salts	
6	Most stable ion in aq	ueous solution is		
	1) Cr^{+3}	2) Mn^{+3}	3) Ti^{+3}	4) V^{+3}
7	Fluorine stabilize hig	hest oxidation sta	ite is due to higher lattic	ce energy in case of
	1) VF ₅	2) CrF ₆	3) CoF₃	4) both 2 & 3

www.de	lightclasses.com				7550201255
8	Which one of the follo properties?	wing pairs of elements	is called chemical twins beca	ause of their very sin	milar chemical
	1) Mn and W	2) Mo andTc	3) Fe and Re 4) H	f and Zr	
9	The spin only magne	tic moment of [<i>MnBi</i>	$\left[r_4^2\right]^{2-}$ is 5.9 B.M. The geome	etry of complex ion	is
	(1) Tetrahedral				
	(2) Square planar				
	(3) Trigonal bipyrami	dal			
	(4) Octahedral				
10	Which of the follow	ving oxides shows e	lectrical properties like 1	netals?	
	(1) SiO ₂	(2) MgO	(3) $SO_2(s)$	(4) CrO_2	
11	A common observatio (1) diamagnetic	n seen in Fe₃O₄is that i (2) Paramagnetic	t is ferromagnetic at room to (3) Ferromagnetic	emperature but at 8 (4) Non magnetic	50K it, becomes
12	German silver is a (1) Cu, Zn and Ag		(3) Cu, Zn, Tin	(4) Mn, Cr, Ni	
13	Which of the follo	owing is an ampho	teric oxide?		
	(1) V_2O_5, Cr_2O_3		$(2)\ Mn_2O_7,Cr_2O_3$		
	(3) CrO, V_2O_5		${\rm (4)}\ V_2O_5,\!V_2O_4$		
14	Among the fol	lowing, mixed	oxide is		
	_	_	3) Fe_3O_4	4) bot	h 1 and 3
15	The nature of tran	nsition metal oxide 2) Basic	'C' in the above reac	tion is	4) Neutral
16	Which of the follo	owing compound	conductivity similar to	metallic coppe	r?
	1) NaCl	2) K_2SO_4	3) Re O ₃		All of these
17			ferrimagnetism on heati		aramagnetic?
	1) MgFe ₂ O ₄	2) AgBr	5) Fe ₃ O ₄ 4	4) Both 1 and 3	

www.de	lightclasses.com			75	50201255
18	Which of the follo	owing oxide shows me	tallic or insulating p	roperties depending on temp	erature?
	1) <i>VO</i>	2) <i>VO</i> ₃	3) <i>TiO</i> ₃	4) All of these	
19	_		pin angular momentum	and orbital angular momentum.	Spin only
	magnetic moment va				
	1) 2.87 B.M.	2) 3.87 B.M.	3) 3.47 B.M.	4) 3.57 B.M.	
20	Which of the follo	owing metals of 3d se	ries do not show v	ariable oxidation state?	
	1) Sc, Ti	2) Ti , Cu	3) Sc, Z	n 4) Co, Ni	
21	Interstitial comp	ounds are not form	ed by		
	1) Co	2) Ni	3) F	Fe 4) Ca	
	1) CO	2) NI	3) [4) Ca	•
22	Of the following t	ransition metals, the	maximum number a	of oxidation states are exhib	ited by
				or oxidation states are eximp	red by
	1) manganese (Z=	25) 2) ird	on (Z=26)		
23	Incorrect stateme	ent of the following i	is		
		six shorter and two l			
	(2) $K_2Cr_2O_7$ is let	ess soluble in water ti	han $Na_2Cr_2O_7$		
	. ,	ises KI to KIO ₃ in fa			
	(4) Colour of Ki	MnO ₄ and $K_2Cr_2O_7$ i	s due to a – a trans	Itions	
24	Four successive mem	hers of the first row tran	sition elements are liste	ed below with their atomic numb	ers Which
		ed to have the highest thi		sa perem man arem acemie namb	ers. Willen
	1) vanadium(Z=23)	2) ma	anganese (Z=25)		
	3) chromium (Z=24)	4) iro	on (Z=26)		
25	In which of the fo	llowing pairs are both	the ions coloured in	n aqueous solution?	
	4) So ³⁺ Co ²⁺	2) N;2+ C;+	2) 17:2+	T:3+ 4) Co3+ T:3+	
	1) Sc^{3+} , Co^{2+}	$2) Ni^{2+}, Cu^+$	3) <i>Ni</i> ²⁺ ,	Ti^{3+} 4) Sc^{3+}, Ti^{3+}	

www.de	lightclasses.com					7	550201255
26	The catalytic act	ivity of transition	n metals a	and their com	npounds is ascr	ibed mainly to	O
	1) their ability to	adopt variable	oxidation	states			
	2) their chemica	l reactivity					
	3) their magneti	c behavior					
	4) their unfilled	d-orbitals					
27	Four successive men standard potential (are listed below.	For which one o	f them, the
	1) $Cu(Z=29)$	2) $Fe(Z = 26)$) 3) <i>Co</i> (<i>Z</i> =	= 27) 4)	Ni(Z=28)		
28	The IP of Zr is 6	574 kJ/mole. The	IP of Hf	is			
	1) 656 kJ	2) 76	60 kJ	3)	616 kJ	4) 63	1 kJ
29	The atomic numbers to have the highest s			vely 23, 24,25 ar	nd 26. Which one	of these may be	expected
	1) Cr	2) Mn	3) F	-e	4) V		
30	Maximum oxi	dation state ex	hibited	by Osmium	is		
	1) +8	2)	+7		3) +6		4) +5
31	The <i>KMnO</i> ₄ox	idises KI in fain	t alkaline	e medium as	5		
	(1) KIO ₃	(2) 12		(3) KIO	(4)	KIO ₄	
32	When acidified	d $K_2Cr_2O_7$ solu	ution is a	dded to <i>Sn</i>	²⁺ salts, then	Sn ²⁺ change	s to
	1) Sn	2) ,	Sn^{3+}	3) Sn ⁴⁺	4) <i>Si</i>	$\imath^{\scriptscriptstyle +}$	

www.de	lightclasses.com					7550201255
39	The bonds preser	nt in the structur	e dichromate i	on are		
	1) four equivalen	t Cr-O bonds onl	у			
	2) six equivalent	Cr-O bonds and o	one O-O bond			
	3) six equivalent	Cr-O bonds and o	one Cr-Cr bond			
	4) six equivalent	Cr-O bonds and o	one Cr-O-Cr bo	nd		
40	In a volumetric expe			f KMnO₄ is re	duced to MnSO ₄	. If the normality of the
	1) 0.5 M	2) 0.2 M	3) 1.0 M		4) 0.4 M	
41	Which of the follo	wing compound	ls are coloured	due to cha	nge transfer p	ohenominon?
	1) K ₂ Cr ₂ O ₇	2) H_2S	O_4	3) AgCl		4) FeSO ₄
42	The number of mole	s of KMnO ₄ that wil	l be needed to re	act with one	mole of sulphite	e ion in acidic solution is
	1) 2/5	2) 3/5	3) 4/5		4) 1	
43	The correct basi (1) $La^{+3} > Lu^{+3}$ (2) $Ce^{+3} > Lu^{+3}$ (3) $Lu^{+3} > Ce^{+3}$ (4) $La^{+3} > Ce^{+3}$	$E^{3} > Ce^{+3} > Eu^{+3}$ $E^{3} > La^{+3} > Eu^{+3}$ $E^{3} > Eu^{+3} > La^{+3}$	3 3 3	anthanide	ions will be:	
44	Which of the f	following oxida	ation state is	common f	or all lantha	nides?
	(1)+2	(2)+3		(3)+4		(4)+5
45	Approximate per	centage of lanth	nanoids in mis	ch metal is		
	(1)75%	(2) 25%	(3) 50%		(4) 95%	
46	Arrange the fo	llowing ions in i	increasingord	er of their	ionic radius.	
	Ce^{+3}, La^{+3}, Pr	n^{+3} , Yb^{+3}				
	(1) $Pm^{+3} < La$	$e^{+3} < Ce^{+3} < Yb$	+3	(2)	$Yb^{+3} < Pm^{+}$	$e^{-3} < Ce^{+3} < La^{+3}$
	(3) $Yb^{+3} < Pm^{-1}$	$^{+3} < La^{+3} < Ce^{-1}$	+3	(4)	$Ce^{+3} < Yb^{+3}$	$^{3} < Pm^{+3} < La^{+3}$
	I					

KEY

1	
	ANS-3
2	Key : 2
	$\frac{d^5}{d^5} $ configuration is stable :
3	Key : 2
	Fe^{3+} and Mn^{2+} are iso electronic ions
4	Key : 3 Hint :The no of unpaired electrons are respectively 3,4,2 and 5
5	
	Key: 1
	Hint: Cu(I) has more stable 3d¹oconfiguration while
	Cu(II) has less stable 3d ⁹ configuration. But
	Cu(II) is more stable due to greater effective nuclear charge. Electrons of the outer energy level attracted towards the nucleus by greater force
6	Key: 1
	Hint: In aqueous solution Cr^{+3} has exactly half filled t_{2g} orbitals \therefore stable
7	Key: 3
	Hint: CoF ₃ is stable due to high lattice enthalpy
8	Key: 4
	Hint: Zr, Hf due to Lanthanoid contraction have similar size and properties and called chemical twins

www.delightclasses.com

19	Key: 2
	Hint: $Cr^{3+} = 3d^3$
	It has 3 unpaired electrons and
	$\mu = \sqrt{n(n+2)} = \sqrt{3(3+2)}$
	$=\sqrt{15}=3.87 \ B.M$
20	Key: 3
	Hint: Sc^{+3} , Zn^{+2}
21	Key: 4
	Hint: 'Ca' is not transition metal
	∵ Transition metals from interstitial compounds
22	Key: 1
	Hint: $_{25}Mn$ can exhibit +2,+3,+4,+5,+6 and +7
23	
	Ans-4 Sol: Colour of $K_2Cr_2O_7$ and $KMnO_4(d^0)$ is due to charge transfer phenomenon
24	
	Key: 2
	Hint: IE_3 is more for Mn
	: Mn^{+2} : $3d^5$ stable species more energy needed to remove electron
25	Key: 3
	Hint: Ni^{+2} , Ti^{+3} have unpaired electrons exhibit colour in aqueous solution
06	
26	Key: 1
	Hint: Transition elements exhibits variable oxidation states due to this they can acts as catalysts
27	Key: 1
	Hint: $E_{Cu^{+2}/Cu}^0 = +0.34V$

www.delightclasses.com

	ightclasses.com 7550201255
28	Key: 2
	Hint: The I.P of Hf, is slightly more than Zr due to lanthanide contraction
29	Key: 1
	Hint: Cr after the loss of one electron acquires stable half filled 3d5 configuration. Thus, its second ionization enthalpy is highest
30	Key: 1
	Hint: In OsO ₄ the oxidation number of osmium is +8
31	Key:1
	Hint: $I^- \rightarrow IO_3^-$
32	Key: 3
	Hint: $Cr_2O_7^{-2} + 3Sn^{+2} + 14H^+ \rightarrow 2Cr^{+3} + 3Sn^{+4} + 7H_2O$
33	Key: 2
	Hint: KMnO ₄ is very strong oxidizing agent and it can oxidize HCl to liberate Cl ₂ (g)
	:. HCl cannot be used to acidity KMnO4 solution in volumetric analysis
34	
	Key: 2
	Hint: $2CrO_4^{2-} + 2H^+ \rightarrow Cr_2O_7^{2-} + H_2O$
	$Cr_2O_7^{2-} + 2OH^- \rightarrow 2CrO_4^{2-} + H_2O$
35	Key: 4
	Hint: KMnO ₄ is self indicator at end point pale pink colour become colourless
36	Vou 2
	Key: 3
	Hint: MnO_4^{-2} Manganate ion $Mn^{+6}4s^03d^1$
	1 unpaired electron is present
	∴ coloured and paramagnetic

<u>ww.del</u> 3 7	ightclasses.com 755020125
51	Van 2
	Key: 3
	Hint: In Na ₃ VO ₄ the vanadium is present in +5 oxidation state. In V ⁵⁺ the d-orbitals are
	vacant.
38	Kow 2
	Key: 3
	Hint: $Cr_2O_7^{2-} + 6I^- + 14H^+ \rightarrow 2Cr^{3+} + 3I_2 + 7H_2O$
20	71111 7207 101 1111 7207 1312 171120
39	Vou 4
	Key: 4
	Hint:
	г ¬2-
	O - Cr $Cr - O$
	0/
	L
40	
	Key: 2
	Hint: $KMnO_4 \rightarrow MnSO_4$
	$Eq.wt. = \frac{Molecular\ weigh}{5}$
	$Molarity = \frac{Normality}{5}$
	1
	$=\frac{1}{5}=0.2$
41	
	Key: 1
	Hint: The colour of $Cr_2O_7^{-2}$ can be explained by charge transfer spectra
	The colour of chaptained by charge transfer spectra
12	

www.de	elightclasses.com 7550201255
	Key: 1
	Hint: $6H^+ + 2MnO_4^- + 5SO_3^{-2} \rightarrow 2Mn^2 + 5SO_4^{2-} + 3H_2O$
	5 mole of $SO_3^{-2} \equiv 2 \text{ moles of } MnO_4^-$
	1 mole of $SO_3^{-2} \equiv \frac{2}{5}$ moles of MnO_4^-
43	Key: 4 Hint: Top to bottom basicity decreases
44	Ans-2
45	
	Key:4
	Hint: Approximate percentage of lanthanoids in mischmetal is 95%
46	
	Key:2
	Hint: Due to Lanthanoid contraction their is greater decrease in ionic radius of Lanthanide series,
	because of poor shielding of 4f electrons.
	Hence the order will be : $Yb^{+3} < Pm^{+3} < Ce^{+3} < La^{+3}$
47	
	Key: 1
	Hint:. $_{64}Gd = [Xe]^{54} 4f^7 5d^1 6s^2$
	It is due to the extra stability of half-filled 4f subshell
48	Key: 2
	Hint: Among Lanthanoids promethium is radioactive
49	Key: 2
	Hint: +3 is the most stable state of lanthanide

www.delightclasses.com

www.del	ightclasses.com 7550201255
50	Key: 2
	Hint: Due to Lanthanoid contraction
51	Key: 4
	Hint: Terbium is a lanthanide as it belongs to 4f-series having configuration [Xe]4f ⁹ , 6s ² . However, the remaining members belong to 5f-series of actinides
52	Ans-4
	Sol: Misch metal contains 95% lanthanoid 5% iron and Traces of S, C, Ca, Al